

Originalbetriebsanleitung

FocusMonitor FM+

LaserDiagnosticsSoftware 2.98

Revision 02/2018 DE

Inhaltsverzeichnis

1	GRU	NDLEGENDE SICHERHEITSHINWEISE	7
2	SYM	BOLERKLÄRUNG	9
	2.1	Über diese Betriebsanleitung	11
3	BED	NGUNGEN AM EINBAUORT	11
4	EINL	EITUNG	12
	4.1	Laserstrahlvermessung	
	4.2	Kurzübersicht Installation, Messbetrieb, Auswertung	14
5	MON	TAGE	15
	5.1	Vorbereitung	15
	5.2	Einbaulage	16
	5.3	Ausrichten	17
	5.4	Befestigen	18
6	ELE	(TRISCHER ANSCHLUSS	20
	6.1	Anschluss des FM+ an den PC und die Spannungsversorgung, Beispiel	22
	6.2	Anschluss des FM+ mit PowerMonitor an den PC	23
7	SCH	JTZGASANSCHLUSS	24
8	STAT	USANZEIGE	24
9	SOF	TWARE	25
	9.1	Svstemvoraussetzungen	
	9.2	Software installieren	25
	9.3	Software starten	26
		9.3.1 Grafische Benutzeroberfläche	26
		9.3.2 Menü-Übersicht	30
	9.4	Ethernetverbindung einrichten	32
		9.4.1 Verbindung zum PC aufbauen	
		9.4.2 IP-Adresse ändern	33
10	SOF	IWAREFUNKTIONEN IM DETAIL	35
	10.1	Einstellungen	35
		10.1.1 Sensorparameter	35
		10.1.2 Messumgebung (Menü Messung>>Umgebung)	
		10.1.3 Strahlsuche (Menü Messung>>Einstellung:Strahlsuche)	40
		10.1.4 EInzelmessung (Menu Messung>>Einzelmessung)	41
	10.0	10.1.5 Kaustikmessung	
	10.2	10.2.1 Ealachfarban	
		10.2.2 Falschlarben (aefiltert)	
		10.2.3 Isometrie	
		10.2.4 Kaustikdarstellung (2D-Darstellung)	
		10.2.5 Isometrie 3D	
		10.2.6 Übersicht 86 % bzw. 2. Moment	
		10.2.7 Symmetrieprüfung	57
		10.2.8 Feste Schnitte	58
		10.2.9 Variable Schnitte	59
		10.2.10 Graphische Übersicht	60
		10.2.11 Farbtafeln	60
		10.2.12 Position	61
		10.2.13 Evaluation (Option)	62

	10.3	Datei		63
		10.3.1	Neu	63
		10.3.2	Öffnen	63
		10.3.3	Speichern	63
		10.3.4	Speichern unter	63
		10.3.5	Export	63
		10.3.6	Messeinstellungen laden	63
		10.3.7	Messeinstellungen speichern	63
		10.3.8	Protokoll	64
		10.3.9	Drucken	64
		10.3.10	Vorschau Drucken	64
		10.3.11	Zuletzt geöffnete Datei	64
		10.3.12	Ende	64
	10.4	Bearbei	ten	64
		10.4.1	Kopieren	64
		10.4.2	Ebene löschen	64
		10.4.3	Alle Ebenen löschen	64
	10.5	Kommu	nikation	65
		10.5.1	Freie Kommunikation	65
		10.5.2	Liste gesuchter Geräte	65
	10.6	Skript	g	
		10.6.1	Editor	
		10.6.2	Auflisten	
		10.6.3	Python	
11	MES	SEN	, ,	67
	11 1	Speziell	le Sicherheitshinweise	67
	11.2	Vorauss	setzungen	69
	11.3	Möglich	e Messarten	69
	11.0	11.3.1	Finzelmessung	69
		11.3.2	Kaustikmessung	69
	11 4	Kurzanl	eitung für eine erste Finzelmessung	70
	11.5	Messen	umit dem Detektor DEY-PS+/DEIG-PS+	70 74
12	DISK	IISSION	DER MESSERGERNISSE UND FEHLERANALYSE	76
12	сеці	EDDELI		70
13	гспі			
14	AUS	WAHL DE	ER DETEKTOREN UND MESSSPITZEN	79
	14.1	Grenzw	erte für den Messbetrieb mit HP-CO ₂ -Messspitzen	81
	14.2	Grenzw	erte für den Messbetrieb mit FK High div-Messspitzen	82
	14.3	Messsp	itze wechseln oder drehen	83
	14.4	Detekto	r wechseln	85
15	WAR	TUNG		87
16	TRAI	NSPORT		87
17	MAS	SNAHME		87
12	KON	FORMIT		
10				00
19	TECH	INISCHE		89
20		ESSUNG		90
	20.1	Position	i des Pinnole am Pocusivionilor (bezogen auf die Geratekoordinaten)	

21	ANH	ANG		93
	21.1	Anlager	isteuerung	93
	21.2	Beschre	bibung des MDF-Dateiformates	93
22	GRU	NDLAGE	N DER STRAHLDIAGNOSE	95
	22.1	Lasersti	ahlparameter	95
		22.1.1	Rotationssymmetrische Strahlen	96
		22.1.2	Nicht rotationssymmetrische Strahlen	97
	22.2	Berechr	nung der Strahldaten	98
		22.2.1	Bestimmung des Nullevels	98
		22.2.2	Bestimmung der Strahllage	99
		22.2.3	Radiusbestimmung mit dem 2. Moment der Leistungsdichteverteilung	99
		22.2.4	Radiusbestimmung mit der Methode des 86%igen Leistungseinschlusses	
		22.2.5	Weitere Radiusdefinitionen (Option)	101

PRIMES - das Unternehmen

PRIMES ist ein Hersteller von Messgeräten zur Laserstrahlcharakterisierung. Diese Geräte werden zur Diagnostik von Hochleistungslasern eingesetzt. Das reicht von CO₂-Lasern über Festkörperlaser bis zu Diodenlasern. Der Wellenlängenbereich vom Infrarot bis zum nahen UV wird abgedeckt. Ein großes Angebot von Messgeräten zur Bestimmung der folgenden Strahlparameter steht zur Verfügung:

- die Laserleistung
- die Strahlabmessungen und die Strahllage des unfokussierten Strahls
- die Strahlabmessungen und die Strahllage des fokussierten Strahls
- die Beugungsmaßzahl, M²
- die Polarisation des Laserstrahls

Entwicklung, Produktion und Kalibrierung der Messgeräte erfolgt im Hause PRIMES. So werden optimale Qualität, exzellenter Service und kurze Reaktionszeit sichergestellt. Das ist die Basis, um alle Anforderungen unserer Kunden schnell und zuverlässig zu erfüllen.

1 Grundlegende Sicherheitshinweise

Bestimmungsgemäße Verwendung

Der FocusMonitor ist ausschließlich dazu gebaut, Messungen im oder in der Nähe des Strahlenganges von Hochleistungslasern durchzuführen. Jeder darüber hinausgehende Gebrauch gilt als nicht bestimmungsgemäß. Zur Gewährleistung eines sicheren Betriebes darf das Gerät nur nach den Angaben des Herstellers betrieben werden.

Das Benutzen des Gerätes für nicht vom Hersteller spezifizierten Gebrauch ist untersagt und kann zu gesundheitlicher Gefährdung bis hin zu tödlichen Verletzungen führen. Das Gerät darf nur in der Art und Weise eingesetzt werden, aus der keine potentielle Gefahr für Menschen entsteht.

Das Gerät selbst emittiert keine Laserstrahlung. Jedoch wird während der Messung der Laserstrahl durch das Gerät geleitet. Dabei entsteht Streustrahlung (Laserklasse 4). Deshalb sind die geltenden Sicherheitsbestimmungen zu beachten und erforderliche Schutzmaßnahmen zu treffen.

Geltende Sicherheitsbestimmungen beachten

Beachten Sie die nationalen und internationalen Bestimmungen und Normen von ISO/CEN sowie die Vorschriften der Berufsgenossenschaft. Nationale Grundlage der Sicherheitsbestimmungen ist die Arbeitsschutzverordnung zu künstlicher optischer Strahlung – OstrV und darauf basierend die Technischen Regeln zur Arbeitsschutzverordnung zu künstlicher optischer Strahlung (TROS Laserstrahlung), welche frühere Vorschriften wie z. B. die BGV B2 – Unfallverhütungsvorschrift Laserstrahlung ersetzt.

Erforderliche Schutzmaßnahmen treffen

🛕 GEFAHR

Verletzungsgefahr durch Laserstrahlung

Bedingt durch das Messprinzip wird der Laserstrahl an der Messspitze reflektiert (Laserklasse 4).

Im Messbetrieb ist auch mit Schutzbrille und Schutzkleidung ein Sicherheitsabstand von 1 Meter zum FocusMonitor einzuhalten!

Wenn sich Personen in der Gefahrenzone sichtbarer oder unsichtbarer Laserstrahlung aufhalten, z. B. an nur teilweise abgedeckten Lasersystemen, offenen Strahlführungssystemen und Laserbearbeitungsbereichen, sind folgende Schutzmaßnahmen zu treffen:

- Tragen Sie Laserschutzbrillen (OD 6), die an die verwendete Laserwellenlänge angepasst sind.
- Schützen Sie sich vor direkter Laserstrahlung, Streureflexen sowie vor Strahlen, die durch die Laserstrahlung generiert werden (z. B. durch geeignete trennende Schutzeinrichtungen oder auch durch Abschwächung dieser Strahlung auf ein unbedenkliches Niveau).
- Verwenden Sie Strahlführungs- bzw. Strahlabsorberelemente die keine gefährlichen Stoffe freisetzen sobald sie mit der Laserstrahlung beaufschlagt werden und die dem Strahl hinreichend widerstehen können.
- Installieren Sie Sicherheitsschalter und/oder Notfallsicherheitsmechanismen, die das unverzügliche Schließen des Verschlusses am Laser ermöglichen.
- Befestigen Sie das Messgerät stabil, um eine Relativbewegung des Gerätes zur Strahlachse zu verhindern und somit die Gefährdung durch Streustrahlung zu reduzieren (das ist auch notwendig, um eine optimale Performance bei der Messung sicherzustellen).

Qualifiziertes Personal einsetzen

Alle Benutzer des FocusMonitor müssen in die Bedienung des Messgerätes eingewiesen sein und grundlegende Kenntnisse über die Arbeit mit Hochleistungslasern, Strahlführungssystemen und Fokussiereinheiten haben.

Umbauten und Veränderungen

Der FocusMonitor darf ohne unsere ausdrückliche Zustimmung weder konstruktiv noch sicherheitstechnisch verändert werden. Jede Veränderung schließt eine Haftung unsererseits für resultierende Schäden aus.

Haftungsausschluss

Der Hersteller und der Vertreiber der Messgeräte schließt die Haftung für Schäden oder Verletzungen jeder Art aus, die durch den unsachgemäßen Gebrauch der Messgeräte oder die unsachgemäße Benutzung der zugehörigen Software entstehen. Der Käufer und der Benutzer verzichten sowohl gegenüber dem Hersteller als auch dem Lieferanten auf jedweden Anspruch auf Schadensersatz für Schäden an Personen, materielle oder finanzielle Verluste durch den direkten oder indirekten Gebrauch der Messgeräte.

2 Symbolerklärung

In dieser Dokumentation wird auf Restgefahren mit folgenden Symbolen und Signalworten hingewiesen:

🚹 GEFAHR

Bedeutet, dass Tod oder schwere Körperverletzung eintreten **wird**, wenn die entsprechenden Vorsichtsmaßnahmen nicht getroffen werden.

🚹 WARNUNG

Bedeutet, dass Tod oder schwere Körperverletzung eintreten **kann**, wenn die entsprechenden Vorsichtsmaßnahmen nicht getroffen werden.

Bedeutet, dass eine leichte Körperverletzung eintreten **kann**, wenn die entsprechenden Vorsichtsmaßnahmen nicht getroffen werden.

ACHTUNG

Bedeutet, dass Sachschaden entstehen **kann**, wenn die entsprechenden Vorsichtsmaßnahmen nicht getroffen werden.

Am Gerät selbst wird auf Gebote und mögliche Gefahren mit folgenden Symbolen hingewiesen:

Warnung vor Laserstrahlung

Warnung vor Handverletzungen

Vor Inbetriebnahme die Betriebsanleitung und insbesondere die Sicherheitshinweise lesen und beachten!

Weitere Symbole, die nicht sicherheitsrelevant sind:

Hier finden Sie nützliche Informationen und hilfreiche Tipps.

CE Mit der CE-Kennzeichnung garantiert der Hersteller, dass sein Produkt den Anforderungen der relevanten EG-Richtlinien entspricht.

Handlungsaufforderung

2.1 Über diese Betriebsanleitung

Diese Dokumentation beschreibt die Arbeit mit dem FocusMonitor und dessen Bedienung mit der "Laser-DiagnosticsSoftware" (im Folgenden "LDS" genannt).

Bei der Beschreibung der Software liegen die Schwerpunkte bei Konfigurations- und Kommunikationseinstellungen sowie dem Messbetrieb.

Diese Betriebsanleitung beschreibt die zum Zeitpunkt der Drucklegung gültige Softwareversion v2.98.8 Da die Bediensoftware laufend weiterentwickelt wird, ist es möglich, dass auf der mitgelieferten Installations-CD eine andere Versionsnummer aufgedruckt ist. Die korrekte Funktion des Gerätes mit der Software ist dennoch gewährleistet.

Sollten Sie trotzdem Fragen haben, geben Sie uns bitte die bei Ihnen installierte Software-Version bekannt. Sie finden die Softwareversion, das Erstellungsdatum und die Windows[®]-Versionen, für die unsere LaserDiagnoseSoftware programmiert wurde, unter dem Menüpunkt: Hilfe>>Über die LaserDiagnoseSoftware.

Abb. 2.1: Informationen zur aktuellen Software-Version

3 Bedingungen am Einbauort

- Die Messgeräte dürfen nicht in kondensierender Atmosphäre betrieben werden.
- Die Umgebungsluft muss frei sein von organischen Gasen.
- Schützen Sie die Geräte vor Spritzwasser und Staub.
- Betreiben Sie die Messgeräte nur in geschlossenen Räumen.

VORSICHT

/!\

Brand- und Explosionsgefahr durch Laserstrahlung.

Im Messbetrieb entsteht Streustrahlung.

Lagern Sie keine brennbaren Materialien oder leicht entzündlichen Stoffe am Messort.

4 Einleitung

4.1 Laserstrahlvermessung

Die Fertigung mit Laserstrahlung kann durch eine Kontrolle der Laserstrahlparameter wirkungsvoll überwacht werden. Der Laserstrahl wird im Wesentlichen charakterisiert durch:

- die Strahlleistung
- die Strahlabmessungen und die Strahllage des unfokussierten Strahls
- die Strahlabmessungen und die Strahllage im Fokus
- die Polarisation des Laserstrahls.

Diese grundlegenden Laserstrahlparameter haben großen Einfluss auf die Ergebnisse der Lasermaterialbearbeitung. Um eine reproduzierbare Prozessqualität zu erhalten, ist es notwendig, alle Veränderungen der Strahlparameter zu erkennen. Veränderungen können dabei entstehen sowohl durch:

laserinterne Ursachen, z. B.

- die Alterung und Verunreinigung der optischen Komponenten
- die Dejustierung des Resonators

als auch durch:

Effekte im Strahlführungssystem oder der Fokussiereinheit, z. B.

- die Verschmutzung oder die Dejustierung von Spiegeln oder Linsen
- organische Spurengase in der Luft (Thermal Blooming)

Das Bearbeitungsergebnis bei der Fertigung mit Lasern hängt im Allgemeinen von der Strahlleistung sowie der Leistungsdichte im Fokusbereich ab. Darüber hinaus muss die Lage des Fokuspunktes bezüglich der Bearbeitungszone exakt bekannt sein. Variationen dieser Sollgrößen gehen häufig einher mit Einbußen bei der Prozessgeschwindigkeit oder der Prozessqualität.

Die periodischen Messungen der Laserstrahlparameter erlauben eine zuverlässige Überwachung des Werkzeugs Laserstrahl. Dies ist eine der wesentlichen Grundlagen für eine reproduzierbare Fertigung mit Laserstrahlung und somit für die Sicherung der Produktqualität.

PRIMES hat dazu Messsysteme konzipiert, die auch in einem industriellen Umfeld die notwendigen Messungen durchführen können.

Laserstrahlradius, -position und Leistungsdichteverteilung im Fokus sowie im unfokussierten Strahl beeinflussen das Ergebnis der Lasermaterialbearbeitung stark. Um eine reproduzierbare Bearbeitungsqualität sicherzustellen, ist es notwendig alle Variationen der Strahlparameter zu erkennen und zu erfassen.

Der FocusMonitor (Abb. 4.1) dient der Analyse des **fokussierten** Laserstrahls. Das Gerät vermisst die räumliche Leistungsdichteverteilung im Fokusbereich der Bearbeitungsoptik.

Das System errechnet daraus den Fokusradius, die Fokuslage im Raum sowie den Strahlpropagationsfaktors K bzw. die Beugungsmaßzahl M².

Abb. 4.1: FocusMonitor FM+

Abb. 4.2: Optomechanischer Aufbau des FM+

Die Leistungsdichteverteilung im Fokus wird mit Hilfe einer rotierenden Messspitze gemessen, die in y-Richtung zeilenweise den Strahlquerschnitt abtastet. Die sehr kleine Öffnung in den Messspitze (Pinhole) koppelt dabei jeweils einen kleinen Teil der Strahlung aus. Spiegel lenken das Messsignal schließlich zum Detektor. Der gesamte Messkopf kann über eine integrierte z-Achse automatisch verfahren werden. So können durch das Abfahren der Strahlkaustik die Propagationsparameter komplett bestimmt werden.

Durch den Einsatz verschiedener Detektoren und unterschiedlicher Messspitzen kann der FocusMonitor in einem weiten Wellenlängen- und Leistungsdichtebereich an die speziellen Erfordernisse der Strahldiagnostik angepasst werden. Der Einsatzbereich der Systeme reicht von einigen MW/cm² bis zu wenigen W/cm². Detaillierte Beschreibungen zu anderen Detektoren und auch Messspitzen finden Sie im Kapitel14 auf Seite 79.

4.2 Kurzübersicht Installation, Messbetrieb, Auswertung

1. Sicherheitsvorkehrungen treffen

- Streustrahlung minimieren und Reststrahlung abschirmen
- Für vollständige Absorption der Strahlung hinter der Messzone sorgen
- Schutzbrille tragen oder besser während der Messung außerhalb der Laserkabine bleiben.

2. Installieren des Messgerätes und der Software

- Messgerät zum Laserstrahl ausrichten
- Stabil befestigen
- Strahlverlauf durch den Messbereich kontrollieren
- LaserDiagnoseSoftware installieren/starten
- Elektrisch anschließen/Spannungsversorgung einschalten
- Kommunikation zwischen Computer und den Messgeräten prüfen (Menü Freie Kommunikation, Schaltfläche *Test*)

3. Messen

- **Einzelmessung** (automatisch oder manuell einrichten): Die Position und die Größe des Messfensters kann relativ zum maximalen Messbereich eingestellt werden. Die Verstärkung (bzw. Dämpfung bei Übersteuerung) kann getrennt eingestellt werden.
- Kaustikmessung: Serienmessung, bei der die z-Position schrittweise verändert wird. Die Parameter werden automatisch oder manuell eingestellt. Die Beugungsmaßzahl M² (Strahlpropagationsfaktor K) kann direkt bestimmt werden.

4. Darstellen

- 3D-Darstellung (Isometrie) der räumlichen Leistungsdichteverteilung
- Höhenliniendarstellung der räumlichen Leistungsdichteverteilung in Falschfarben
- Frei wählbare Höhenlinienschnitte in x- und y-Richtung sowie nach Leistungsdichten
- Feste Höhenlinienschnitte in x- und y-Richtung bei 86 %, 80 %, 60 %, 40 %, 20 % und 10 % der Gesamtleistung.
- Kaustikdarstellung/3D
- Symmetrieprüfung
- Bemerkungen und Messparameter können integriert gespeichert werden
- Folgende Parameter werden numerisch angezeigt: Strahlradius, x-Strahlradius, y-Strahlradius, Winkel, x-Position, y-Position, Laserleistungsdichte, Datum, Uhrzeit, Laserleistung
- Grafische Übersicht verschiedener Strahlparameter
- Darstellung verschiedener Messergebnisse (Ebenen)

5. Dokumentieren

- Messdaten in Dateien speichern und Daten wieder einlesen
- Aktuelle Einstellungen speichern und Daten wieder einlesen
- Aktuellen Fensterinhalt drucken
- Aktuellen Fensterinhalt in die Zwischenablage kopieren
- Gemessene numerische Daten exportieren: Radius, Position in eine Tab-separierte Textdatei (nach der Messung)
- Protokolldatei der berechneten Zahlenwerte erstellen messbegleitend

5 Montage

5.1 Vorbereitung

Prüfen Sie vor der Montage die Platzverhältnisse, insbesondere den benötigten Freiraum im Verfahrbereich des FocusMonitor (siehe Kapitel 20 auf Seite 90).

Das Messgerät muss stabil aufgestellt und mit Schrauben befestigt sein (siehe Kapitel 5.4 auf Seite 18).

ACHTUNG

Beschädigungsgefahr

Hindernisse im Verfahrbereich des FocusMonitor können zu Kollisionen führen und das Gerät schädigen.

Halten Sie den Verfahrbereich frei von Hindernissen (Schneiddüsen, Andruckrollen usw.). Beachten Sie, dass der Messkopf nach einem Aus- und wieder Einschalten der Spannungsversorgung oder einem Reset automatisch in die Ruheposition fährt. Halten Sie diesen Bereich ebenfalls frei.

In der LaserDiagnoseSoftware haben Sie die Möglichkeit, den Verfahrbereich des FocusMonitor zu beschränken (siehe Kapitel 10.1.1 auf Seite 35).

ACHTUNG

Beschädigungsgefahr/Brandgefahr

Der Laserstrahl muss nach dem Passieren des Messgerätes vollständig absorbiert werden. Schamottesteine oder andere teilabsorbierende Oberflächen sind ungeeignet!

Verwenden Sie einen geeigneten Absorber. PRIMES bietet, je nach Anwendung, passende Absorber an, z. B. den PowerMonitor.

ACHTUNG

Beschädigungsgefahr des Absorbers

Trifft der fokussierte Laserstrahl auf den Absorber, kann er diesen zerstören.

Achten Sie auf ausreichenden Abstand zwischen dem FocusMonitor und Absorber (die maximal zulässige Leistungsdichte des Absorbers darf nicht überschritten werden).

5.2 Einbaulage

Sie können das Messgerät in zwei Lagen einbauen (siehe Abb. 5.2). In der vorgesehenen Standardlage mit Strahleinfall von oben (Darstellung A) oder "über Kopf" mit Strahleinfall von unten (Darstellung B). Bei begrenzter Zugänglichkeit haben Sie auch die Möglichkeit, die Messspitze um 180 Grad zu drehen (siehe Kapitel "14.3 Messspitze wechseln oder drehen" auf Seite 83). Dann können Sie auch in der Überkopf-Position einen von oben einfallenden Strahl vermessen (Darstellung C).

Abb. 5.2: Einbaumöglichkeiten des FocusMonitor

Um Transportschäden zu vermeiden, wird der FM+ mit demontierter Messspitze geliefert. Sie wird mit der gewölbten Seite zur Strahlquelle zeigend eingebaut (siehe Abb. 5.3). Weitere Hinweise zur Montage der Messspitze finden Sie in Kapitel 14.3 auf Seite 83.

Abb. 5.3: Orientierung der Messspitze beim Einbau

5.3 Ausrichten

Für den FocusMonitor muss ein senkrechter Strahleinfall bezüglich der x-y-Ebene sichergestellt sein.

Verletzungsgefahr durch rotierende oder sich bewegende Bauteile

Durch die Linearbewegung von Horizontal- und Vertikalschlitten und die rotierende Drehscheibe besteht im Messbetrieb Verletzungsgefahr.

Richten Sie den FocusMonitor nur bei ausgeschalteter Spannungsversorgung und nicht mehr rotierender Messspitze aus.

Die vertikale Ausrichtung (z-Achse) ist hauptsächlich von der erwarteten Fokusebenenlage abhängig. Der maximale vertikale Hub des Messgerätes beträgt 120 mm.

Der Strahlfokus sollte in der Mitte des Verfahrbereichs der z-Achse liegen. Beim FM+ sind das 60 mm (siehe Abb. 5.4).

Abb. 5.4: Messbereich FM+

Für eine problemlose Ausrichtung (x-y-Ebene) zum Laserstrahl ist jedem Gerät eine Einrichtblende beigelegt. Je nach Geräteausführung unterscheiden sich die Einrichtabstände und somit auch die Blenden. Die Einrichtblende wird an den Messkopf angelegt und das Gerät so ausgerichtet, dass der Pilotstrahl durch die kleine Bohrung der Blende hindurchgeht (siehe Abb. 5.5).

ACHTUNG

Beschädigungsgefahr der Messspitze

Trifft der Laserstrahl auf die in Ruheposition stehende Messspitze, kann diese zerstört werden.

Bewegen Sie nach der Montage die Messspitze aus der Messzone.

Abb. 5.5: Einrichtblende am Messkopf des FocusMonitor FM+

Nach jedem Einschalten der Versorgungsspannung fährt der FocusMonitor nach 5 bis 12 Sekunden in die Ruheposition (unterste z-Position).

5.4 Befestigen

WARNUNG

Verletzungsgefahr durch Laserstrahlung

Wird das Messgerät aus der eingemessenen Position bewegt, kann im Messbetrieb vermehrt Streustrahlung entstehen.

Befestigen Sie das Gerät so, dass es durch unbeabsichtigtes Anstoßen oder Zug an den Kabeln nicht bewegt werden kann.

In der Montagefläche des Gehäuses befinden sich acht Langlöcher Ø 6,4 mm und vier Passungsbohrungen Ø 6^{G7} mm für die Befestigung auf einer kundenseitigen Halterungn (siehe Abb. 5.6 auf Seite 19). Befestigen Sie das Gehäuse mit mindestens 4 Schrauben M6.

Die Gesamtlänge der Schrauben ist von den Dimensionen der kundenseitigen Halterung abhängig. Die bemaßte Anordnung der Befestigungsbohrungen finden Sie in Kapitel 20 auf Seite 90.

Abb. 5.6: Befestigungsbohrungen, Ansicht von oben (gleiches Bohrbild unten)

6 Elektrischer Anschluss

Der FocusMonitor benötigt für den Betrieb eine Versorgungsspannung von 24 V±10 % (DC). Ein passendes Netzteil gehört zum Lieferumfang. Benutzen Sie zur Verbindung des Netzteils mit dem lokalen Stromnetz nur das beiliegende Kabel.

Die Daten werden zwischen FM+ und PC durch die Ethernet-Verbindung übertragen. An den FM+ kann über die RS485-Schnittstelle (PRIMES-Bus) ein weiteres Gerät, wie beispielsweise ein PowerMonitor PM, angeschlossen werden. Das Signal des PM wird durch den FM+ über die Ethernet-Schnittstelle an den PC weitergeleitet. Das zusätzliche Messgerät wird über den FM+ durch dessen Netzteil elektrisch versorgt.

Bevor Sie den PC über die Ethernet-Schnittstelle anschließen, müssen Sie die LDS Software auf dem Rechner installieren (siehe Kapitel "Software installieren" auf Seite 25). Der FM+ dient dabei für die Software auf dem Rechner als Dongle zur Freigabe bestimmter Softwarefunktionen.

Abb. 6.1: Anschlüsse des FocusMonitor

Bitte stellen Sie erst alle elektrischen Verbindungen her und schalten Sie das Gerät ein, bevor Sie die Software starten!

Netzteilanschluss

Harting M12-P-PCB-THR-2PC-5P-LCOD	-M-STR	
3 2	Pin	Funktion
	1	+24 V
	2	Nicht belegt
	3	GND
4	4	Nicht belegt
<u>FE</u> /	5	FE

Tab. 6.1: Anschlussbuchse für das Netzteil

PRIMES-Bus

Polbild D-Sub-Buchse, 9-polig (Ansicht	Steckseite)	
	Pin	Funktion
	1	GND
5 1	2	RS 485 (+)
	3	+24 V
O(°°°°°)O	4	Nicht belegt
	5	Nicht belegt
9 6	6	GND
	7	RS 485 (–)
	8	+24 V
	9	Nicht belegt

Tab. 6.2: D-Submin-Buchse, PRIMES-Bus

Falls Sie selbstkonfektionierte Kabel verwenden möchten, beachten Sie bitte folgendes:

- Die Kabellänge vom Netzteil zum FM+ darf maximal 1,8 m betragen, da sonst der Spannungsabfall am Kabel zu gro
 ß wird.
- Verwenden Sie nur geschirmtes Kabel und beachten Sie, dass die Schirmung durchgängig wirksam ist.
- Die Kabellänge vom FM+ zum zweiten Gerät (PRIMES-Bus RS485) darf maximal 2 m betragen.

Triggerausgang (OPTION)

Der FM+ kann optional mit einem Triggerausgang (24 V) geliefert werden. Das Triggersignal ist mit der Rotation der Messspitze gekoppelt und kann so bei gepulsten Lasern zur Synchronisierung benutzt werden. Die Polarität, Pulsweite und Verzögerung des Triggersignals sind einstellbar.

Polbild Binder M8 Serie 786/718, 6-polic	(Ansicht Stee	ckseite)
	Pin	Funktion
	1	Trigger +
	2	Trigger -
$\left(\bigcirc \bigcirc \bigcirc \right)$	3	Drehpuls
	4	Nicht belegt
	5	Nicht belegt
	6	GND

6.1 Anschluss des FM+ an den PC und die Spannungsversorgung, Beispiel

Abb. 6.2: Anschluss des FocusMonitor

Verbinden Sie den FM+ über ein Crossover-Kabel mit dem PC oder über ein Patchkabel mit dem Netzwerk.

6.2 Anschluss des FM+ mit PowerMonitor an den PC

Abb. 6.3: Anschluss des FocusMonitor und PowerMonitor

Verwenden Sie bei Anschluss mehrerer Geräte immer nur **ein** Netzteil für die Spannungsversorgung (typischerweise das Original-PRIMES-Netzteil).

ACHTUNG

Beschädigungsgefahr durch Überspannung

Beim Trennen der elektrischen Leitungen während des Betriebes (bei angelegter Versorgungsspannung) entstehen Spannungsspitzen, welche die Kommunikationsbausteine der Messgeräte zerstören können.

Schalten Sie zuerst das Netzteil aus, bevor Sie die Buskabel trennen.

7 Schutzgasanschluss

Beim Messen sehr großer Leistungsdichten ($CO_2 > 15-20 \text{ MW/cm}^2$; YAG > 5 MW/cm²) ist es möglich, dass auf der Oberfläche der Messspitze ein Plasma gezündet wird. Dies kann zur Zerstörung der Messspitze führen (siehe auch Kapitel 14.1 auf Seite 81 und Kapitel 14.2 auf Seite 82). Deshalb ist in den Geräten mit Hochleistungserweiterung ein entsprechender Schutzgasanschluss integriert (siehe Abb. 7.1).

ACHTUNG

Beschädigungsgefahr

Die Auswirkungen eines kundenseitigen unkontrollierten Gasstroms (z. B. Prozessgas) können die Messung verfälschen oder sogar das Gerät schädigen.

Verwenden Sie als Schutzgas nur Helium, Stickstoff oder Argon am dafür vorgesehenen Anschluss. Der Druck darf maximal 0,5 bar betragen.

Abb. 7.1: Schutzgasanschluss am FocusMonitor

8 Statusanzeige

Die Statusanzeige besteht aus einem Leuchtring, der durch unterschiedliche Farben und statisches oder rotierendes Leuchten verschiedene Zustände des FM+ anzeigt.

Farbe	Leuchtzustand	Bedeutung
Weiß	Der gesamte Ring leuchtet	Versorgungsspannung liegt an.
Gelb	Rotierendes Leuchten *	Die Messspitze rotiert, die unterschiedlichen Rota- tionsgeschwindigkeiten werden dabei indiziert.
Rot	Rotierendes Leuchten *	Die Messspitze rotiert und die y-Achse wird ver- fahren> Messung läuft, die unterschiedlichen Rotationsgeschwindigkeiten werden dabei indiziert.

Abb. 8.1: Zustände der Statusanzeige

* Die Umlaufgeschwindigkeit beim rotierenden Leuchten simuliert die Rotationsgeschwindigkeit der Messspitze.

9 Software

Für den Betrieb der Messgeräte muss auf dem PC die "PRIMES-LaserDiagnosticsSoftware" (LDS) installiert werden. Das Programm befinden sich auf dem mitgelieferten Datenträger.

9.1 Systemvoraussetzungen

Betriebssystem:	Windows® XP/Vista/7/10
Prozessor:	Intel® Pentium® 1 GHz (oder vergleichbarer Prozessor)
Benötigter	
Festplattenspeicher:	15 MB
Monitor:	19" Bildschirmdiagonale empfohlen, Auflösung min. 1024x768

Deaktivieren Sie beim Betrieb auf einem Notebook alle Stromsparfunktionen. Anderenfalls können Probleme bei der schnellen seriellen Datenübertragung auftreten.

9.2 Software installieren

Die Software wird menügesteuert von dem mitgelieferten Datenträger installiert. Starten Sie die Installation durch Doppelklick auf die Datei "Setup LDS v.2.98.8.exe" und folgen Sie den Anweisungen.

Available applications What do you want to install?
Please choose the applications/drivers to install, then click Next. Primes LaserDiagnose Software Version 2.98 USB4o-Serial driver for LDS Primes PowerMonitor Software Version 2.48 USB Driver for Powermonitor
< Back Next > Cancel

Abb. 9.1: Setup der PRIMES-Software

Die Installationssoftware schreibt das Hauptprogramm "LaserDiagnoseSoftware.exe" – falls nicht anders spezifiziert – ins Verzeichnis "Programme/PRIMES/LDS". Darüber hinaus wird auch die Einstellungsdatei "laserds.ini" in dieses Verzeichnis kopiert.

In der Datei "laserds.ini" sind die Einstellungsparameter für die Messgeräte hinterlegt.

9.3 Software starten

Starten Sie die Software erst, wenn die Geräte verkabelt und eingeschaltet sind.

Starten Sie das Programm durch einen Doppelklick auf das PRIMES-Symbol LDS in der neuen Startmenügruppe oder die Desktopverknüpfung.

9.3.1 Grafische Benutzeroberfläche

Zunächst wird ein Startfenster geöffnet, in dem Sie wählen, ob Sie messen wollen oder lediglich eine bereits vorhandene Messung darstellen möchten (Werkseinstellung "Messen").

Abb. 9.2: Startfenster der LaserDiagnoseSoftware

Nachdem das angeschlossene Gerät erkannt worden ist, werden die grafische Benutzeroberfläche und einige wichtige Dialogfenster geöffnet.

Damit Sie die entsprechenden Informationen schnell zuordnen können, werden in den folgenden Kapiteln spezielle Textauszeichnungen für Menüpunkte, Menüpfade und Texte der Bedienoberfläche verwendet.

Textauszeichnung	Beschreibung
Text	Kennzeichnet Menüpunkte. Beispiel: Dialogfenster Sensorparameter
Text1>>Text2	Kennzeichnet die Navigation zu bestimmten Menüpunkten. Die Reihenfolge der Menüs wird durch das Zeichen ">>" dargestellt. Beispiel: Darstellung>>Übersicht
Text	Kennzeichnet Schaltflächen, Optionen und Felder. Beispiel: Mit der Schaltfläche <i>Start</i>

Die grafische Benutzeroberfläche besteht im Wesentlichen aus einer Menü- und einer Werkzeugleiste, über die Sie verschiedene Dialog- oder Darstellungsfenster aufrufen können.

Abb. 9.3: Die wichtigsten Elemente der Benutzeroberfläche

Sie können parallel verschiedene Mess- und Dialogfenster öffnen. Dabei bleiben einige grundsätzlich wichtige Fenster (für das Messen oder die Kommunikation) permanent im Vordergrund. Alle anderen Dialogfenster werden überschrieben, sobald Sie ein neues Fenster öffnen.

Abb. 9.4: Die wichtigsten Dialogfenster

Die Menüleiste

In der Menüleiste öffnen Sie per Mausklick alle Haupt- und Untermenüs, die das Programm bietet.

Die Werkzeugleiste

Durch Anklicken der Symbole in der Werkzeugleiste sind die folgenden Programmmenüs unmittelbar zu erreichen.

Datei	verwa V	ltung	[Darste	llungs ▼	art		Dateiauswahl ▼	Ebenenauswahl ▼	
	Þ	<pre>*</pre>				0		Kaustik 3750.foc	▼ Ebene 0 ▼	B
1	2	3	4	5	6	7	8	9	10	11

- 1 Neuen Datensatz anlegen
- 2 Existierenden Datensatz öffnen
- 3 Aktuellen Datensatz speichern
- 4 Isometriedarstellung des ausgewählten Datensatzes öffnen
- 5 Variable Schnitte-Darstellung öffnen
- 6 Übersicht (86 %) öffnen
- 7 Falschfarbendarstellung öffnen
- 8 Kaustikpräsentation 2D
- 9 Liste mit allen geöffneten Datensätzen
- 10 Anzeige der ausgewählten Messebene
- 11 Anzeige der am Bus verfügbaren Messgeräte über grafische Symbole

Alle Messergebnisse werden immer in das in der Werkzeugleiste ausgewählte Dokument geschrieben. Nur hier angewählte Dokumente können dargestellt werden. Nach dem Öffnen müssen Sie die Datensätze explizit anwählen (siehe auch Kapitel "10.2 Darstellung und Dokumentation der Messergebnisse" auf Seite 48).

Nur das in der Werkzeugleiste ausgewählte Gerät ist bereit zur Messung.

Beispiel:

Ein FocusMonitor und ein PowerMonitor sind über den PRIMES-Bus miteinander verbunden. Beide Geräte werden eingeschaltet und die LaserDiagnoseSoftware gestartet.

Dann wird das Symbol des zuerst am Bus gefundenen Gerätes aktiviert, z. B. des FocusMonitor. Für eine Leistungsmessung mit dem PowerMonitor reicht es, auf das Gerätesymbol (PM) in der Werkzeugleiste zu klicken. Dann können Sie unter Messung>>Leistungsmessung die Leistungsmessung aktivieren.

Abb. 9.5: Aktivieren des PowerMonitor für eine Leistungsmessung

9.3.2 Menü-Übersicht

Datei	
Neu	Öffnet eine neue Datei für die Messdaten.
Öffnen	Öffnet eine Messdatei mit den Erweiterungen '.foc' oder '.mdf'.
Schließen	Schließt die Datei, die in der Werkzeugleiste ausgewählt ist.
Alle Dateien schließen	Schließt alle geöffneten Dateien.
Speichern	Speichert die aktuelle Datei im foc- oder mdf-Format.
Speichern unter	Öffnet das Menü zur Speicherung der Daten, die in der Werkzeugleiste ausgewählt sind. Nur Dateien mit den Erweiterungen '.foc' oder '.mdf' können zuverlässig wieder eingelesen werden.
Export	Exportiert die aktuelle Datei im Protokoll-Format ".xls" und ".pkl".
Messeinstellungen laden	Öffnet eine Datei mit Messeinstellungen mit der Erweiterung ".ptx".
Messeinstellungen speichern	Öffnet das Menü zum Speichern der Einstellungen des letzten Programmlaufs. Nur Dateien mit der Erweiterung ".ptx" können geöffnet werden.
Protokoll	Startet ein Protokoll der numerischen Ergebnisse. Sie können wahlweise in eine Datei oder eine Datenbank geschrieben werden.
Drucken	Öffnet das Standard-Druckmenü.
Vorschau Drucken	Zeigt die Druckvorschau.
Zuletzt geöffnete Datei	Zeigt die zuvor geöffnete Datei an.
Ende	Beendet das Programm.
Deerheiten	
Kenieren	Kaniart das altuelle Fonster in die Zwischensblage
Kopieren Ebana lässban	Kopiert das aktuelle Fenster in die Zwischenablage.
	Löscht die Daten aus der in der Werkzeugleiste angewählten Detei
Alle Ebenen loschen	LOSCHI alle Dateri aus der in der werkzeugleiste angewahlten Dater.
Bonutzarahana waah	Durch Eingaba ainas Passwartas wird aina andara Banutzarahana aktiviart
Benutzerebene wech- seln	Durch Eingabe eines Passwortes wird eine andere Benutzerebene aktiviert.
Benutzerebene wech- seln Messung	Durch Eingabe eines Passwortes wird eine andere Benutzerebene aktiviert.
Benutzerebene wech- seln Messung Messumgebung	Durch Eingabe eines Passwortes wird eine andere Benutzerebene aktiviert. Hier können verschiedene Systemparameter eingegeben werden, zum Beispiel: - Referenzwert für die Laserleistung - Brennweite - Wellenlänge - Bemerkungen
Benutzerebene wech- seln Messumgebung Sensorparameter	Durch Eingabe eines Passwortes wird eine andere Benutzerebene aktiviert. Hier können verschiedene Systemparameter eingegeben werden, zum Beispiel: - Referenzwert für die Laserleistung - Brennweite - Wellenlänge - Bemerkungen Folgenden Geräteparameter können hier z. B. eingestellt werden: - die räumliche Auflösung - die mechanischen Bewegungsgrenzen in z-Richtung - Auswahl eines der am Bus angeschlossenen Messgeräte - die manuelle Einstellung der z-Achse
Benutzerebene wech- seln Messumgebung Messumgebung Sensorparameter	Durch Eingabe eines Passwortes wird eine andere Benutzerebene aktiviert.
Benutzerebene wech- seln Messumgebung Sensorparameter LQM-Justage Einstellung Strahlsuche	Durch Eingabe eines Passwortes wird eine andere Benutzerebene aktiviert. Hier können verschiedene Systemparameter eingegeben werden, zum Beispiel: - Referenzwert für die Laserleistung - Brennweite - Wellenlänge - Bemerkungen Folgenden Geräteparameter können hier z. B. eingestellt werden: - die räumliche Auflösung - die mechanischen Bewegungsgrenzen in z-Richtung - Auswahl eines der am Bus angeschlossenen Messgeräte - die manuelle Einstellung der z-Achse Für FocusMonitor nicht relevant Einstellungen der Parameter für die Strahlsuche. Nur für FocusMonitor relevant.
Benutzerebene wech- seln Messumgebung Messumgebung Sensorparameter	Durch Eingabe eines Passwortes wird eine andere Benutzerebene aktiviert.
Benutzerebene wech- seln Messumgebung Messumgebung Sensorparameter LQM-Justage Einstellung Strahlsuche CCD Geräte-Info CCD Einstellungen	Durch Eingabe eines Passwortes wird eine andere Benutzerebene aktiviert. Hier können verschiedene Systemparameter eingegeben werden, zum Beispiel: - Referenzwert für die Laserleistung - Brennweite - Wellenlänge - Bemerkungen Folgenden Geräteparameter können hier z. B. eingestellt werden: - die räumliche Auflösung - die mechanischen Bewegungsgrenzen in z-Richtung - Auswahl eines der am Bus angeschlossenen Messgeräte - die manuelle Einstellung der z-Achse Für FocusMonitor nicht relevant Einstellungen der Parameter für die Strahlsuche. Nur für FocusMonitor relevant. Für FocusMonitor nicht relevant
Benutzerebene wech- seln Messumgebung Messumgebung Sensorparameter LQM-Justage Einstellung Strahlsuche CCD Geräte-Info CCD Einstellungen Leistungsmessung	Durch Eingabe eines Passwortes wird eine andere Benutzerebene aktiviert. Hier können verschiedene Systemparameter eingegeben werden, zum Beispiel: - Referenzwert für die Laserleistung - Brennweite - Wellenlänge - Bemerkungen Folgenden Geräteparameter können hier z. B. eingestellt werden: - die räumliche Auflösung - die mechanischen Bewegungsgrenzen in z-Richtung - Auswahl eines der am Bus angeschlossenen Messgeräte - die manuelle Einstellung der z-Achse Für FocusMonitor nicht relevant Einstellungen der Parameter für die Strahlsuche. Nur für FocusMonitor relevant. Für FocusMonitor nicht relevant Für FocusMonitor nicht relevant Öffnet das Messfenster Leistungsmessung.
Benutzerebene wech- seln Messumgebung Messumgebung Sensorparameter LQM-Justage Einstellung Strahlsuche CCD Geräte-Info CCD Einstellungen Leistungsmessung Einzelmessung	Durch Eingabe eines Passwortes wird eine andere Benutzerebene aktiviert.
Benutzerebene wech- seln Messumgebung Messumgebung Sensorparameter LQM-Justage Einstellung Strahlsuche CCD Geräte-Info CCD Einstellungen Leistungsmessung Einzelmessung Kaustik	Durch Eingabe eines Passwortes wird eine andere Benutzerebene aktiviert. Hier können verschiedene Systemparameter eingegeben werden, zum Beispiel: Referenzwert für die Laserleistung Bernweite Wellenlänge Bemerkungen Folgenden Geräteparameter können hier z. B. eingestellt werden: die räumliche Auflösung die mechanischen Bewegungsgrenzen in z-Richtung Auswahl eines der am Bus angeschlossenen Messgeräte die manuelle Einstellung der z-Achse Für FocusMonitor nicht relevant Einstellungen der Parameter für die Strahlsuche. Nur für FocusMonitor relevant. Für FocusMonitor nicht relevant Öffnet das Messfenster Leistungsmessung. Dieser Menüpunkt ermöglicht den Start von Einzelmessungen, des Monitorbetriebes und dem Videomode. Ermöglicht den Start einer Kaustikvermessung. Sowohl automatische Messungen als auch Serienmessungen manuell eingestellter Parameter sind möglich. Die auto- matische Messung beginnt mit einer Strahlsuche und durchläuft dann selbständig den gesamten Messablauf. Lediglich der zu untersuchende z-Bereich sowie die Zahl der gewünschten Messebenen müssen eingegeben werden.

Optionen	Ermöglicht die Einstellung von speziellen Geräteparametern (nur für erfahrene Anwender).	
Darstellung		
Falschfarben	Falschfarbendarstellung der räumlichen Leistungsdichteverteilung.	
Falschfarben (gefiltert)	Anwendung einer räumlichen Filterung (Spline-Funktion) auf die Falschfarbendarstellung der Leistungsdichteverteilung.	
Isometrie	3-dimensionale Darstellung der räumlichen Leistungsdichteverteilung.	
Isometrie 3D	Erlaubt 3D-Ansicht von Kaustik und Leistungsdichteverteilung mit räumlicher Dre- hung sowie eine optionale Isophotendarstellung	
Übersicht (86%)	Numerischer Übersicht der Messergebnisse in den verschiedenen Ebenen basi rend auf der 86 % Strahlradiusdefinition.	
Übersicht (2. Moment)	Numerischer Übersicht der Messergebnisse in den verschiedenen Ebenen basie- rend auf der 2. Momenten Strahlradiusdefinition.	
Kaustik	Ergebnisse der Kaustikvermessung und die Resultate des Kaustikfits - wie Strahlpropagationsfaktor k, Fokuslage und Fokusradius.	
Rohstrahl	Für FocusMonitor nicht relevant	
Symmetrieprüfung	Analysewerkzeug zur Prüfung der Strahlsymmetrie besonders für die Justage von Laserresonatoren. Kein Standardfeature der Geräte.	
Feste Schnitte	Darstellung der räumlichen Leistungsdichteverteilung mit festen Schnittlinien bei 6 unterschiedlichen Leistungsniveaus.	
Variable Schnitte	Darstellung der räumlichen Leistungsdichteverteilung mit frei wählbaren Schnittli- nien.	
Graphische Übersicht	Ermöglicht eine Auswahl graphischer Darstellungen - unter anderem des Radius, der x - und y - Position über der z-Position oder der Zeit.	
Systemstatus	Für FocusMonitor nicht relevant	
Evaluierungsparameter	Laden gespeicherter Evaluierungsparameter.	
Farbtafeln	Verschiedene Farbtabellen sind verfügbar um z.B. Beugungsphänomene detailliert analysieren zu können.	
Werkzeugleiste	Zum Anzeigen oder Ausblenden der Werkzeugleiste	
Position	Verfahren des FM-Messkopfes in eine definierte Position.	
Evaluation	Vergleich der Messergebnisse mit festgelegten Grenzwerten und Bewertung (Opti- on)	
Kommunikation		
Geräte suchen	Das System sucht den Bus nach den verschiedenen Geräte-adressen ab. Das ist notwendig, wenn die Gerätekonfiguration am PRIMES-Bus nach dem Starten der Software geändert wurde.	
Freie Kommunikation	Darstellung der Kommunikation auf dem PRIMES-Bus.	
Liste gesuchter Geräte	Listet die Geräteadressen der einzelnen PRIMES-Geräte auf, die gesucht werden.	
Skript		
Editor	Öffnet den Skriptgenerator, ein Werkzeug, um komplexe Messabläufe automatisch zu steuern (mit von PRIMES entwickelten Skriptsprache).	
Auflisten	Zeigt eine Liste der geöffneten Fenster an.	
Python	Öffnet den Skriptgenerator, um komplexe Messabläufe automatisch zu steuern (mit Skriptsprache Python).	
Hilfe		
Aktivierung	Ermöglicht die Freischaltung von Sonderfunktionen	
Über die		
LaserDiagnoseSoftware	Liefert Informationen über die Softwareversion	

9.4 Ethernetverbindung einrichten

Der FM+ hat eine feste IP-Adresse die auf dem Typenschild angegeben ist. Wird der FM+ mit Spannung versorgt, bevor das Netzwerk angeschlossen ist, wird die statische IP-Adresse verwendet.

Die StandardIP-Adresse des FM+ ist:

IP-Adresse: 192.168.116.84 Subnetzmaske: 255.255.255.0

Der PC muss ebenfalls eine feste IP-Adresse im gleichen Subnet haben, z. B. :

IP-Adresse: 192.168.116.XXX Subnetzmaske: 255.255.255.0

Die ersten drei Blöcke der IP-Adresse müssen mit der IP des FM+ übereinstimmen!

	Eigenschaften von Internetprotokoll (TCP/IP)	? ×
	Allgemein	
	IP-Einstellungen können automatisch zugewiesen werden, wenn das Netzwerk diese Funktion unterstützt. Wenden Sie sich andernfalls an den Netzwerkadministrator, um die geeigneten IP-Einstellungen zu beziehen.	
	C IP-Adresse automatisch beziehen	
	Folgende IP-Adresse verwenden:	
	IP-Adresse: 192.168.116.80	
F	Subnetzmaske: 255.255.0	
•	Standardgateway:	
	Folgende DNS-Serveradressen verwenden: Bevorzugter DNS-Server: Alternativer DNS-Server: Typenschild FM+	
	PRIMES	
	Type FocusMonitor FM + S/N 8285 Built 2017	
	MAC-Address 00 03 F4 07 6C E3 IP-Address DHCP enabled Static IP-Address 192.168.116.84	

9.4.1 Verbindung zum PC aufbauen

- 1. Starten Sie die PRIMES LaserDiagnoseSoftware.
- 2. Öffnen Sie das Dialogfenster Kommunikation>>Freie Kommunikation.
- 3. Wählen Sie den Mode "TCP" aus (die Option "Zweite IP" darf nicht aktiviert sein!).
- 4. Geben Sie im Feld "TCP" die IP-Adresse Ihres Gerätes ein.
- 5. Klicken Sie auf die Schaltfläche "Verbinden" (im Busmonitor erscheint "Connected").
- 6. Klicken Sie auf die Schaltfläche "Speichern" (die Konfiguration wird gespeichert und muss beim Neustart der Software nicht erneut eingegeben werden).

Freie Kommuni			X
Mode Seriel I TCP OUS	SB-To-Seriell 🔲 Zweite IP 🛛	✔ Parity Prim	es Geräte Suchen
Serielle Schnittstelle			
Von 64 An 161	sdelay 01000	_	Senden
Von 64 An 168	Init 110	v	Senden
Von 64 An 113	ql		Senden
Hex Code:	Com Port:	-	Testen
TCP			
IP: 192 . 168 . 116 . 84	Port: 6001 Verbinden	Schließen	Speichern
MAC: 00 : 00 ; 00 ;	00 : 00 : 00 Finde IP	Lösche IP	IP Zuweise
Befehl		Senden	
IP:	Port:		
Befehl		Se	nden

Abb. 9.6: Verbindung aufbauen im Menü Freie Kommunikation

9.4.2 IP-Adresse ändern

Sie können die voreingestellte IP-Adresse des Gerätes mit folgenden Befehlen im Menü *Kommunikation>>Freie Kommunikation* ändern:

IP-Adresse (Beispieladresse)	192.	168.	116.	84
	ſ	ſ	Ť	1
Befehle	se0328≭xyz	se0329≭xyz	se0330≭xyz	se0331≭xyz

xyz sind hierbei Platzhalter für die IP-Adressbytes (Wertebereich 1-255), diese müssen immer dreistellig eingegeben werden!

Die Zahl 84 ist mit 084 einzugeben.

Das Symbol * steht der Eindeutigkeit wegen für ein Leerzeichen.

Beispiel: Sie möchten die IP-Adresse von 192.168.116.84 auf 192.168.116.86 ändern.

- 1. Starten Sie die Primes LaserDiagnoseSoftware.
- 2. Öffnen Sie das Menü Kommunikation>>Freie Kommunikation.
- 3. Wählen Sie den Mode "TCP" aus (die Option "Zweite IP" darf nicht aktiviert sein!).
- 4. Geben Sie im Feld "TCP" die IP-Adresse Ihres Gerätes ein.
- 5. Klicken Sie auf die Schaltfläche "Verbinden" (im Busmonitor erscheint "Connected").
- 6. Aktivieren Sie das Kontrollkästchen *Bus-Protokoll schreiben* (das Protokoll kann beim Auftreten von Problemen sehr nützlich sein).
- Geben Sie im Eingabefeld *Befehl* folgendes Kommando ein (bitte beachten Sie unbedingt die korrekte Eingabe des Leerzeichens *):

se0331*****086

- Klicken Sie auf Senden und warten Sie die Bestätigung im Busmonitor ab (in Abb. 9.7 "-> Adr:0331 Wert: 086")
- 9. Schalten Sie das Gerät aus und wieder ein. Nach diesem Neustart ist die IP-Adresse aktualisiert.

Abb. 9.7: Ändern der IP-Adresse im Menü *Freie Kommunikation*

10 Softwarefunktionen im Detail

Die LaserDiagnoseSoftware ist die Steuerzentrale für PRIMES-Messgeräte, die Strahlverteilungen oder Fokusgeometrien vermessen und daraus die Strahlpropagationseigenschaften ermitteln. Die LDS steuert die Messungen und liefert die Messergebnisse grafisch aufbereitet zurück. Darüber hinaus wird aus den Messdaten die Messung bewertet, um Ihnen Hinweise auf die Zuverlässigkeit des Messergebnisses zu geben.

10.1 Einstellungen

Da die LDS multifunktional für alle PRIMES-Geräte konzipiert ist, sind vor dem Messen einige gerätespezifische Einstellungen vorzunehmen. Ebenso ist die kundenseitige Anlagen- und Strahlgeometrie zu berücksichtigen.

10.1.1 Sensorparameter

Sperrbereich

Bei vielen Laserbearbeitungsanlagen ist der Bewegungsraum für den FocusMonitor durch Düsen oder Andruckrollen begrenzt. Besonders bei Schneidanwendungen ist es zwingend notwendig, die Düse zu demontieren, da sonst die Vermessung des oberen Teils der Kaustik nicht möglich ist.

Falls diese nicht demontiert werden sollen, muss die Bewegung des Messsystems begrenzt werden, um Kollisionen mit den Messgeräten zu vermeiden. Dies ist möglich im Feld **Sperrbereich** des Dialogfensters **Sensorparameter** (siehe Abb. 10.1). Mit den drei Ziehquadraten im Bereichsfenster können Sie den Bewegungsraum in y- und z-Richtung einschränken. Sie können die Werte auch in den darunterliegenden Eingabefeldern numerisch eingeben. Vorgabewerte werden automatisch in der Datei "laserds.ini" dauerhaft gespeichern.

Abb. 10.1: Dialogfenster Sensorparameter

Gerät

Über diesen Eintrag wählen Sie das Gerät aus, das bedient werden soll. Je nach Anzahl der angeschlossenen Geräte werden zusätzlich Gerätenummern vergeben.

UPM (Einstellen der Rotationsgeschwindigkeit)

Für die Arbeit mit hohen und höchsten Leistungsdichten kann beim FocusMonitor die Drehzahl der Messspitze erhöht werden. Der Basiswert ist 1875 Umdrehungen pro Minute. Für hohe Leistungsdichten können Sie mit 3750 min⁻¹ und für höchste – bei vielen Geräten sogar mit 7500 min⁻¹ – arbeiten. Optional sind auch weitere Drehzahlen möglich.

Wenn Sie die Auflösung oder die Drehzahl ändern, müssen Sie einen Reset-Zyklus auslösen, damit die Einstellungen vom Gerät übernommen werden.

Auflösung

Mögliche Einstellungen:

• 32 x 32 bis 1024 x 1024

In der Regel sind 64 Bildpunkte pro Zeile bei insgesamt 64 Zeilen ausreichend. Die Auflösung in y-Richtung gibt die Anzahl der Zeilen vor und die Auflösung in x-Richtung die Anzahl der Abtastpunkte pro Zeile. Die Messzeit vergrößert sich, wenn die Anzahl der Messspuren steigt. Bei 64 x 64 Bildpunkten liegt der minimale zeitliche Abstand zweier Messungen bei 8 bis 9 Sekunden.

Die Zeit für den Datentransfer hängt von der Datenmenge und der Schnittstelle ab. Die Datenmenge steigt mit höherer Auflösung. Die Leistung des PCs beeinflusst ebenfalls die Datentransferzeit. Bitte beachten Sie folgende Abhängigkeit der minimalen Fenstergröße von der gewählten Drehzahl und Auflösung.

Die minimale Strahlgröße für den FM+ beträgt ungefähr 100 µm, Fenster, die kleiner als 250 µm sind, sollten vermieden werden. Da der minimale Strahlradius 100 µm beträgt, sind die durchgestrichenen Werte nicht empfehlenswert:

Drehzahl in min ⁻¹	x-Auflösung in Pixel	Minimale Fenstergröße x und y in mm
	32	0.02
	64	0.04
1875	128	0.08
	256	0,16
	512	0,33
	1024	0,65
3750	32	0.04
	64	0.08
	128	0,16
	256	0,33
	512	0,65
	1024	1,31
7500	32	0.08
	64	0,16
	128	0,33
	256	0,65
	512	1,31
	1024	2,62

Tab. 10.1: Minimale Fenstergröße

Detektor

Für die verschiedenen Anwendungen und spezielle Wellenlängen gibt es unterschiedliche Detektoren. Um das unterschiedliche Zeitverhalten der eingesetzten Detektoren zu kompensieren, ist die Auswahl des richtigen Detektortyps nötig. (Voreinstellungen in der Datei "laserds.ini"). Beim Einsatz von CO₂-Halbleiterdetektoren müssen die Kompensationsparameter eventuell entsprechend ihrer Beschriftung manuell angepasst werden. Das entsprechende Einstellfenster öffnen Sie durch Anklicken der Schaltfläche *Mehr*.

Detektor		×
DFCL-Pyro-FM-1 DFH-Semiconduktor-CO2- DBC-Pyro-BM-1 DFCE-Pyro-FM-NoLabel-1 DFY-2 DFY-5 DFY-75 DFY-75 DFY-75 DBY-2 DBY-5 DFCM / DFCM-2	linzufügel Ändern Löschen	Detektor: Name Typ Tau1 Skala1 Tau2 Skala2 Tau3 Skala3 Rauschen/ADC
Speichern Importieren Abbrechen		

Abb. 10.2: Dialogfenster für das Anpassen von CO2-Halbleiterdetektoren

Eine Auswahltabelle der Detektortypen finden Sie im Kapitel "14 Auswahl der Detektoren und Messspitzen" auf Seite 79.

Nach einer Änderung der Empfindlichkeit durch Umschalten am Detektor müssen Sie das Gerät zurücksetzen (aus- und wieder einschalten).

Manuelle Z-Achse

Aktivieren Sie diese Option, wenn die z-Position der Messebene nicht über die interne z-Achse verfahren wird. Geben Sie in diesem Fall die z-Werte für jede Ebene manuell im Menü Messeinstellungen >> Einzelmessung ein, die Software führt auf Basis der ermittelten Strahlradien und der z-Werte eine Kaustikauswertung durch.

So kann z. B. auch der Strahlpropagationsfaktor aus den Messdaten des unfokussierten Strahls in verschiedenen Abständen von der Strahlquelle bestimmt werden.

Abb. 10.3: Manuelle Eingabe der z-Position

Gedrehte Messspitze

Aktivieren Sie diese Option, wenn Sie mit einer um 180 ° gedrehten Messspitze arbeiten. Die x-Achse wird dann intern gedreht (siehe Abb. 10.4).

Abb. 10.4: Koordinaten bei gedrehter Messspitze

Radiuskorrektur

Schalten Sie die Radiuskorrektur ein beim Vermessen von rechteckigen oder linienförmigen Laserstrahlen. Diese Option kompensiert die Krümmung der Abtastspuren.

10.1.2 Messumgebung (Menü Messung>>Umgebung)

Messumgebung
Bemerkung:
Brennweite: 200 mm
Z-Achsen Offset: 0 mm
X-Achsen Offset: 0 mm
Y-Achsen Offset: 0 mm
Koordinatenrotation: 0 Grad
Wellenlänge: 1.060 (Nd:YAG) 💌 µm
Gerät-Offset: 0.000 m
Max. Leistung: 🛛 🗸 🗸
Aktualisieren Messung in
all. Ebenen aktualisieren 🔿 Dokument

Abb. 10.5: Dialogfenster Messumgebung

Im Dialogfenster **Messumgebung** können Sie Daten wie den Lasertyp, Informationen über die Fokussieroptik usw. speichern (das Eingabefeld **Gerätoffset** ist für den FocusMonitor nicht relevant). Diese Daten können unter **Darstellung>>Übersicht** gelesen werden.

In das Kommentarfeld dürfen Sie das Zeichen '#' nicht eingeben. Dieses Zeichen wird in der Software als Trennzeichen verwendet. Wird es im Kommentarfeld eingesetzt, können Probleme beim Speichern und Wiederlesen von Messdaten auftreten.

Einen Zeilenwechsel im Kommentarfeld erzwingen Sie mit der Tastenkombination:

<Strg> + <Eingabe>

Die Eingabe der Leistung ist ein Bezugswert für die relative Leistungsstellung im Menüpunkt Einzelmessung oder Kaustikmessung. Die Angabe der Brennweite ist relevant für die Auswertung von Kaustikmessungen. Aus dem Kaustikverlauf und der eingetragenen Brennweite wird auf den Rohstrahldurchmesser auf der Fokussieroptik zurückgerechnet.

Weiterhin können Sie einen z-Achsen-Offset sowie Koordinatendrehwinkel eingeben. Die Wellenlänge bildet die Basis für die korrekte Bestimmung der Beugungsmaßzahl. Wählbar sind

- 10,6 µm f
 ür die CO₂ Laserstrahlung
- 1,06 µm für Nd:YAG Laserstrahlung
- 0,632 µm für HeNe Laserstrahlung.

Sie können einen µm-Wert auch numerisch eingeben.

Die Einträge können Sie auch nach einer Messung mit der Schaltfläche **Aktualisieren** noch verändern. Mit **In allen Ebenen aktualisieren** werden die eingegebenen Werte in allen Ebenen eingefügt und verrechnet, während bei **Aktualisieren** die Werte nur in der aktuellen Ebene verarbeitet werden.

10.1.3 Strahlsuche (Menü Messung>>Einstellung:Strahlsuche)

Hier werden die Parameter für die automatische Strahlsuche festgelegt. Die Voreinstellung ist für die üblichen Anwendungen geeignet.

Einstellunger		
- Strahlsuche-		
Punkt X:	128 🔹	
Punkt Y:	128 💌	
Trigger:	150	
Prozent:	35	
Messfenster Faktor:	3	
ОК		

Abb. 10.6: Dialogfenster Einstellungen

Die Strahlsucheparameter stellen Sie ein über:

Punkt X, Punkt Y

 Die Auswahl der räumlichen Auflösung. Bei sehr kleinen Strahlen kann es mit 64 x 64 Bildpunkten im 8 mm x 8 mm Fenster zu Suchproblemen kommen, da der Pixelabstand dabei etwa 120 µm beträgt. In diesem Fall empfehlen wir, die Auflösung zu vergrößern.

Trigger

• Die Signalschwelle (Trigger) ist abhängig vom Nullniveau des Messsystems.

Prozent

• Der Prozentwert gibt an, um wieviel das Signal das Nullniveau überschreiten muss, um als Strahl erkannt zu werden. Diese Größe wird durch das Signal/Rauschverhältnis des Detektors bestimmt.

Messfenster Faktor

• Der Messfenster-Faktor bestimmt die Größe des Messfensters bei der Strahlsuche. Der Faktor gibt an, um wievielmal größer das Messfenster im Verhältniss zum Strahldurchmesser gewählt wird.

10.1.4 Einzelmessung (Menü Messung>>Einzelmessung)

1	Einzelmessung Monitor	Einzelmessung in der ausgewählten Ebene Wiederholende Messungen in der ausgewählten Ebene
	LineScan (Option)	Messen einer Einzelspur bei fester y-Achse
2	Start	Startet eine Messung in der aktuell ausgewählte Ebene
3	Stop	Beendet die Messung in der aktuell ausgewählte Ebene
4	Reset	Das Messgerät wird zurückgesetzt
5	Stop Motor	Stoppt die rotierende Messspitze, nachdem die Messung beendet ist.
6	Ebene	Auswahl der Messebene (0-49) explizit oder über die Schaltflächen (+/-)
7	Eingabefeld z	Numerische Eingabe der z-Position
8	Kopieren	Kopiert alle Einstellungen (Fenstergröße und -position; x, y, z; usw.) von vorheriger Ebene in die aktuelle Ebene (z. B. 1>>2)
9	Strahlsuche	Startet automatische Strahlsuche in aktueller Messebene
10	Scan	Für FM+ nicht relevant
11	ele. Verst.	Schieberegler zum Einstellen der elektrischen Verstärkung
12	Leist.	Schieberegler zum Einstellen der Laserleistung
13	Eingabefeld Leist.	Numerische Eingabe der Laserleistung
14	Eingabefeld Verst.	Numerische Eingabe der elektrischen Verstärkung
15	Mittelung	Analyse von Serienmessungen. Mittelungsalgorithmen: Mittelwert, Werte des maximalen Pixels und Wert der maximalen Spur
16	Mittelung	Wählbare Anzahl (1-50) von Einzelmessungen für die Mittelung
17	LED-Symbol und Balkenanzeige	Anzeige für den Grad der Signalsättigung (LED grün≙iO, rot≙niO)
18	Falschfarben	Aktiviert die Option Falschfarbendarstellung
19	Zoom	Vergrößerungseinstellung für das Messfensters
20	Symmetrisch	Diese Option erzwingt die Verwendung quadratischer Messfenster, deren Größe allein über x einstellbar ist
21	X/Y	Einstellen der Messfenstergröße, insbesondere für nicht quadratische Fenster.
22	Anzeigefeld	Messfenster zeigt das aktuelle Messergebnis
23	Z	Schieberegler zum Einstellen der z-Position

Mit diesem Dialogfenster können Sie Einzelmessungen oder wiederholende Messungen durchführen. Der Messmodus *Monitor* startet eine fortlaufend wiederholende Messung mit aktuellen Einstellungen. Die Wiederholrate ist abhängig von der räumlichen Auflösung und der Drehzahl. Die Messzeit liegt bei 64 x 64 Pixeln und 1875 min⁻¹ bei etwa 10 Sekunden. Den Monitorbetrieb beenden Sie mit einem Klick auf die Schaltfläche *Abbrechen* im Statusfenster (am rechten unteren Bildschirmrand).

Monitor Gesuchte Adresse : 168		
Abbrechen		

Abb. 10.7: Statusfenster

Die Messfensterposition können Sie manuell oder automatisch einstellen.

Mit der Schaltfläche **Strahlsuche** wird beim FocusMonitor das Messfenster automatisch eingestellt. Das System sucht dabei nur im Gebiet des aktuell eingestellten Fensters auf der eingestellten z-Position. Danach erscheint das Fenster **Strahlsuche**.

Wird die Strahlsuche erfolgreich abgeschlossen, so wird ein Messfenster mit dem gefundenen Strahl im Messfeld des Einzelmessungsfensters eingeblendet. Die Fenstergröße ist dabei noch nicht optimiert. Mit der Schaltfläche *Start* können Sie dann den Strahl aufnehmen.

Bei der manuellen Strahlsuche können Sie die Lage und die Größe des Messfensters innerhalb der mechanischen Grenzen selbst festlegen. Die Auswahl wird in einem PopUp-Menü getroffen, wo [x] für quadratische bzw. [x] und [y] für rechteckige Messfenster festzulegen ist. Die maximale Größe des Messfensters beträgt beim FocusMonitor in der Standard-Konfiguration 8 mm x 8 mm (optional bis 24 mm x 12 mm).

Die Lage des Messfensters wird durch Anklicken und Verschieben des Rahmens mit der Maus verändert. Die Lage des Fensters in z-Richtung (Höhe) kann durch den z-Schieberegler oder über eine numerische Eingabe festgelegt werden. Die Zoom Funktion ermöglicht eine Detailvergrößerung im Messfenster.

Größe des Messfensters

Um die Messfehler zu minimieren, empfehlen wir, die Messfenstergröße so zu wählen, dass der Strahldurchmesser 30 % bis 70 % der Grundseitenlänge des Messfensters entspricht. In jedem Fall muss ein Beschnitt der Verteilung durch den Rand des Messfensters vermieden werden.

Elektrische Verstärkung

Die Leistungsdichteverteilung wird von einem Detektor gemessen. Dessen analoges Ausgangssignal wird verstärkt und anschließend digitalisiert. Es stehen verschiedene Detektoren zur Verfügung (siehe Tab. 14.2 auf Seite 80).

Falls der Detektor übersteuert (rotes LED-Symbol in der Anzeige zur Signalsättigung bzw. ein ADC-Wert von 4095 in der Darstellung *Variable Schnitte*), reduzieren Sie die Verstärkung mit dem Schieberegler "Verst." (oder durch numerische Eingabe) und wiederholen Sie die Messung.

Sowohl eine Übersteuerung als auch zu niedrige Verstärkung können zu unsicheren oder falschen Resultaten führen. Wir empfehlen eine Nachregelung der Verstärkung, um korrekte Ergebnisse zu erhalten.

Laserleistung

Die Laserleistung können Sie mit dem Schieberegler einstellen oder numerisch eingeben. Den Referenzwert für die Leistung geben Sie im Dialogfenster Messung>>Messungebung ein. Die Berechnung der Leistungsdichten bezieht sich auf die hier eingestellten Leistungswerte.

Klicken sie auf die Schaltfläche Start, um die Messung zu starten.

In eine Messdatei können bis zu 50 Messebenen aufgenommen werden. Das ist relevant für Vermessungen der Strahlkaustik sowie für Zeit- oder Leistungsreihen. Sie können für die Darstellung zwischen den einzelnen Messebenen hin- und herschalten.

Mit der Schaltfläche *Kopieren* können Sie Messeinstellungen (Fenstergröße und -position, Leistung und Verstärkung) aus der jeweils vorhergehenden Messebene übernehmen.

Mit der Option *Mittelung* werden die Ergebnisse von bis zu 50 Einzelmessungen pro Ebene gemittelt. Es stehen verschiedene Analysealgorithmen bereit:

Auswahl	Funktion	
Mittelwert	bildet den Mittelwert der gemessenen Verteilungen	
Max. Pixel	ermittelt die punktweisen Maxima der gemessenen Verteilungen	
Max. Spur	ermittelt die maximalen Spuren der gemessenen Verteilungen	

Die Auswahl *Max. Pixel* und *Max. Spur* sind vor allem bei der Untersuchung gepulster Strahlung hilfreich. Die bei *Max. Pixel* bestimmten Radien sind wegen Nullpunktunsicherheiten nicht immer zuverlässig.

Während einer Messung wird ständig der Status des Messsystems angezeigt. Im Einzelnen sind dies:

- die aktuelle Messebene
- der Durchlauf des Referenzzyklus
- das Positionieren des Messkopfes
- die Messung
- die Datenübertragung der Fortschritt wird über die Balkendarstellung angezeigt

Mit der Schaltfläche *Stop* können Sie eine laufende Messung abbrechen, dies beendet auch den Monitorbetrieb.

Wenn Sie die Datenübertragung durch Klicken auf die Schaltfläche **Reset** unterbrechen, müssen Sie den ComPort im Menü Freie Communication erneut auswählen.

Mit der Schaltfläche *Stop Motor* stoppen Sie die Rotation der Messspitze nach Ablauf der aktuellen Messung. Klicken Sie anschließend auf die Schaltfläche *Reset*.

VORSICHT

Verletzungsgefahr durch rotierende Bauteile

Die Messspitze des FocusMonitor rotiert auch nach dem Abschalten der Spannung zunächst noch weiter.

Nicht in den Strahleneingang des Messgerätes fassen oder Gegenstände hineinhalten, solange die Messspitze noch rotiert.

10.1.5 Kaustikmessung

Die Kaustikmessung ist eine Serienmessung, bei der die z-Position variiert wird. Dabei wird jeder z-Position eine eigene Messebene mit den entsprechenden Messergebnissen zugeordnet. Da sich in jeder z-Position Strahlradius und Leistungsdichte verändern, können von Ebene zu Ebene die Lage und Größe des Fensters sowie die Signalverstärkung variieren. Für jede Messebene sind deshalb diese Parameter getrennt einstellbar.

ACHTUNG

Beschädigungsgefahr durch Übertemperatur

Bitte beachten Sie, dass Serienmessungen im Vergleich zu Ihrem Produktionsprozess manchmal wesentlich länger dauern und die Optik in dieser Zeit nicht über den Prozessgasstrom gekühlt wird.

Sorgen Sie in diesem Fall für eine ausreichende Kühlung der optischen Komponenten!

Die Ergebnisse einer Fokusvermessung können durch eine nicht gekühlte Optik verfälscht werden. Die Kaustikmessung selbst können Sie sowohl manuell als auch automatisch durchführen.

Kaustikmessung vorbereiten

Nach korrekter Montage des FocusMonitor sollte der Strahlfokus in der Mitte des Verfahrbereichs der z-Achse liegen (siehe auch Kapitel 5.3 auf Seite 17).

Automatische Kaustikmessung

Für die automatische Kaustikmessung müssen Sie eingeben:

- die Leistung
- die Verstärkung
- die Zahl und die Art der Mittelung
- die minimale und maximale z-Position (bei numerischer Eingabe erst größeren Wert eingeben)
- die Zahl der zu vermessenden Ebenen (minimal 15)
- die Startebene f
 ür die Strahlsuche

Zum Starten eines Messzyklus klicken Sie auf die Schaltfläche *Messung*. Es werden dann nacheinander alle Ebenen durchgemessen.

Der Messzyklus beginnt mit einer automatischen Strahlsuche in der ausgewählten Startebene. Die erste Strahlsuche wird typisch mit maximaler Fenstergröße 8 mm x 8 mm durchgeführt. Falls die Suchfenstergröße nicht dem Maximalfenster entsprechen soll, gehen Sie folgendermaßen vor:

- 1. Deaktivieren Sie die Option Maximale Fenstergröße
- 2. Klicken Sie auf die Schaltfläche Einstellungen
- 3. Geben Sie die gewünschte Fenstergröße (X/Y) ein

Klicken Sie auf die Schaltfläche *Details*, um die Strahlsuchparameter hinsichtlich räumlicher Auflösung, Schwellwerthöhe (Trigger) und minimaler Signalhöhe einzustellen (siehe auch Kapitel 10.1.3 auf Seite 40).

Kaustikeinstellungen	×
Parameter Start: Ebene 0 v Anzahl: 10 v Mode Manuelle Einstellung Automatik Strahlsuche Ebene 0 v Maximale Fenstergröße Symmetrisch Einstellungen Details	Z-Postion Globale Parameter 35.0- 31.5- 24.5- 21.0- 17.5- 14.0- 10.5- 0.0 Leist. 14.0- 17.5- 14.0- 10.0-1

Abb. 10.8: Dialogfenster Kaustikeinstellungen (Automatik)

Sie können die eingestellten Messparameter - Fenstergrößen, Fensterpositionen usw. - in einer Datei speichern und bei Bedarf wieder laden (Datei>>Messeinstellungen speichern/laden).

Manuelle Kaustikmessung

Empfohlene Einstellungen:

Im Bereich von je 2 Rayleighlängen beiderseits des Fokus minimal 10 Messebenen anlegen. Mindestens 5 davon im Abstand von ± einer Rayleighlänge um den Fokuspunkt. Fünf weitere Messpunkte sollten mindestens 2 Rayleighlängen vom Fokus entfernt liegen.

Für eine normkonforme Messung (ISO 11146) muss mindestens über 4 Rayleighlängen gemessen werden. Als praktikabel haben sich 5-6 Rayleighlängen mit etwa 15 Messebenen erwiesen. Bei einer unbekannten Strahlgeometrie sollten Sie sich zunächst durch einige Einzelmessungen oder eine Kaustikmessung mit 5 Ebenen orientieren, bevor Sie eine automatische Kaustikmessung starten.

Die manuelle Kaustikmessung besteht aus einer Abfolge von Einzelmessungen an verschiedenen z-Positionen, wobei die Ergebnisse in jeweils einer eigenen Ebene gespeichert werden.

Messeinstellungen	
	Steuerung Messmodi:
	Einzelmessung 💌
	Start
	Reset
	Stop Motor
	Ebene:
X: 11.99 V: 11.99 V	Kopieren ele.Verst Leist
Zoom 🔽 Symmetrisch	Soan Mittelung:
1 Falschfarben Signalsättigung:	Keine Optim.
	1 -0.0 800

Abb. 10.9: Dialogfenster Messung>>Einzelmessung

Für die manuelle Kaustikmessung sind die folgenden Schritte notwendig:

- 1. Wählen Sie den Menüpunkt Datei>>Neu
- 2. Wählen Sie den Menüpunkt Messung>>Einzelmessung
- 3. Wählen Sie die erste Ebene aus
- 4. Stellen Sie die z-Position ein
- 5. Stellen Sie die Messfenstergröße und -position ein
- 6. Klicken Sie auf die Schaltfläche Start
- 7. Wählen Sie die nächste Ebene aus, klicken Sie auf Kopieren und fahren Sie fort mit Punkt 4.

Wiederholen Sie die Schritte 3. bis 7. ca. 10 bis 15 mal.

Im Menüpunkt Messung>>Kaustik wählen Sie die Option *Manuelle Einstellung* und klicken auf die Schaltfläche *Messung*.

Danach werden die verschiedenen Ebenen mit den eingestellten Parametern gemessen.

Die Messparameter können Sie im Menüpunkt Datei>>Messeinstellungen speichern sichern und bei Bedarf wieder laden.

Als z-Abstand der einzelnen Ebenen empfehlen wir einen Wert, der ca. 0,5 % der Brennweite beträgt. Bei einer Brennweite von 5" (127 mm), sind das ca. 0,5 mm bis 0,6 mm. Bei einer Kaustikmessung mit 15 Ebenen wird damit auf der z-Achse ein Bereich von etwa 8 mm überstrichen.

Zyklische Kaustikmessungen

Bei zyklischen Kaustikmessungen ist es sinnvoll, die Einstellungen der verschiedenen Aufnahmeparameter in einer Datei zu speichern. Diese Daten sind dann bei Bedarf jederzeit verfügbar und können für neue Messungen verwendet werden. Für eine "schnelle" Prüfung des Strahls empfiehlt sich eine Messung mit nur wenigen Ebenen, wobei bei Bedarf auch nur ein Teil der Kaustik ausgemessen wird, weil z. B. die Gasdüse noch montiert ist.

Solch ein Messzyklus dauert ca. 2 bis 3 Minuten. Für diesen Fall ist es auch sinnvoll, den FocusMonitor mit der Anlagensteuerung über das SPS-Interface zu koppeln, damit das Ein- und Ausschalten des Lasers programmgesteuert von der LaserDiagnoseSoftware übernommen werden kann. Für Prüfungen nach einem Laser- und Anlagenservice bietet sich eine Messung mit mehr Ebenen an, weil hier die Messergebnisse mit höherer Genauigkeit ermittelt werden.

Vor der Messung werden bei Bedarf die gespeicherten Einstellungsdaten für die Kaustik aus einer Voreinstellungsdatei geladen (Datei>>Messeinstellungen laden). Nach der Eingabe des gewünschten Dateinamens werden die entsprechenden Daten geladen. Die Messung selbst wird dann als manuelle Kaustikmessung ausgelöst.

Optionen

In diesem Menü sollten nur erfahrene Anwender Einstellungen vornehmen. Viele der Einstellungen sind für den FocusMonitor nicht relevant.

Relevant ist die Umschaltmöglichkeit für die Strahlabmessungen zur Anzeige vom Durchmesser statt Radius, siehe Abb. 10.10.

Aktiviere "Messung beendet" Nachricht	Vullwert-Korrektur für positive Volumen
FFTX FFTY FFTRadius 3 Vollautomatische Kaustik (nur für MSM)	Anzeige Durchmesser
BeamFind aktivieren Integrationszeit-Koeffizient CCD:	Video Mode Anzahl der Messungen: 939
Strahlsuche-Iteration: 3 Max. Kaustic iteration: 3 Zwischenfensteraktivieren	Ansicht Schriftgrad: 10 💌 🔽 Fenster öffnen
Füllfaktor Max 0.60 Min 0.40 Soll 0.50	Verstärkung optimieren Schwelle Max: 3700 Min: 1200
Füllfaktor-Überprüfung aktivieren par1 0.05 par2 0.20	Max. Iteration: 7 Schritt: 2 -
Bearbeitungseinstellung	OffsetX Korrektur: 0.000
 Kompensation für Pyro-Detektor aktivieren Sync. aktivieren Filter aktivieren 	
Defekte Pixel ignorieren (CMOS) Defekte Pixel ignorieren (CCD)	Z-Position Offset: 20.63 Offset (bottom): 5.90

Abb. 10.10: Einstellung für die Anzeige des Durchmessers

10.2 Darstellung und Dokumentation der Messergebnisse

Dieses Kapitel beschreibt die Darstellung, Analyse und Speicherung der Messergebnisse.

Um Vergleiche zwischen verschiedenen Messungen durchzuführen, kann das Programm mehrere Messdatensätze gleichzeitig verwalten. Die geöffneten Datensätze werden in der Werkzeugleiste angezeigt. Um eine Darstellung zu öffnen, wird die zu untersuchende Datei in der Liste der Dateiauswahl selektiert, und danach die gewünschte Präsentationsart ausgewählt.

Durch Anklicken der Symbole auf der Werkzeugleiste sind die folgenden Programmmenüs unmittelbar zu erreichen.

- 8 Kaustikpräsentation
- 9 Liste mit allen geöffneten Datensätzen
- **10** Anzeige der ausgewählten Messebene
- 11 Anzeige der am Bus verfügbaren Messgeräte über grafische Symbole

In den Menüs für die Darstellungsart der Einzelmessungen (Variable Schnittlinien, Isometrie und Falschfarbendarstellung) bewirkt die Option *Autom. Skalierung* eine Ausnutzung der gesamten Darstellungsbandbreite für die Messwerte.

Darüber hinaus können Sie mit der Ebenenauswahl zwischen verschiedenen Bildspeichern der Messreihe hin- und herschalten. Eine Weiterschaltung ist auch mit den Cursortasten hoch/runter möglich, wenn die Ebenenauswahl selektiert ist. Wird die Ebenenauswahl in den Darstellungsmenüs auf Global gesetzt, ist ein simultanes Umschalten zwischen den Ebenen über die Anwahl in der Werkzeugleiste möglich. Der Titel eines Dialogfensters gibt den Namen des dargestellten Datensatzes an.

Zur parallelen Auswertung mehrerer Messungen besitzt das Programm 50 Bildspeicher, die jeweils eine Messung aufnehmen können. Diese Bildspeicher (Messebenen) können Sie auch nutzen, um bei einer Parametervariation die geänderten Messwerte aufzunehmen. Durch die Variation der z-Position in den verschiedenen Ebenen wird eine Kaustikmessung realisiert. Durch eine Veränderung der Laserleistung lässt sich z. B. das thermische Einlaufverhalten des Systems simulieren. Analog dazu sind auch Zeitreihen möglich. Entsprechende Darstellungen ermöglicht unter anderem der Menüpunkt *Grafische Übersicht*.

10.2.1 Falschfarben

Hier wird eine Falschfarbendarstellung der gemessenen Leistungsdichteverteilung erzeugt.

Abb. 10.11: Dialogfenster Falschfarben

Die verwendete Farbskala ist links eingeblendet. Für eine erhöhte Sensitivität, zum Beispiel zur Analyse von Beugungsfiguren, ist es möglich, die verwendeten Farbskalen im Menü Darstellung>>Farbtafeln umzuschalten.

Über den Schieberegler rechts neben der Farbskala können Sie Schnitte zu verschiedenen ADC-Werten mit den zugehörigen Radien anzeigen.

Neben der automatischen Skalierung gibt es noch drei weitere Skalierungsarten.

Skalierung auf Leistungsdichte

Alle Ebenen einer Kaustikmessung werden auf die maximal gemessene Leistungsdichte skaliert. Dies soll helfen die verschiedenen Ebenen besser miteinander vergleichen zu können.

Pixelskalierung

Diese Skalierung ist nur bei der Verwendung von unsymmetrischen Messfenstern von Interesse. Die Achsen der Fenster sind dann nicht länger eine Funktion der Messfenstergröße, sondern der Anzahl der gemessenen Pixel.

Skalierung auf Fenster

Bei dieser Funktion werden alle Messfenster einer Kaustikmessung auf die Größe des maximalen Messfensters vergrößert. Auch diese Funktion soll helfen, die verschiedenen Messebenen einer Kaustikmessung besser miteinander vergleichen zu können.

Hauptachse

Die Strahlachsen können eingeblendet werden.

10.2.2 Falschfarben (gefiltert)

Die dem Filter zugrunde liegende Funktion ist eine Spline-Funktion. Sie ist unter anderem dadurch charakterisiert, dass die Lage der Maxima erhalten bleibt. Dabei werden in einer Matrize die einzelnen Pixel mit einem 1-2-1 Filter gewichtet, so dass das Rauschen verringert wird.

Dieser Filter kann auch mehrfach angewendet werden, ohne dass sich die Lage der Maxima verschiebt.

Abb. 10.12: Dialogfenster Falschfarben (gefiltert)

10.2.3 Isometrie

Dieser Menüpunkt erzeugt eine räumliche Darstellung der gemessenen Leistungsdichteverteilung einer Ebene. Die Farbdarstellung lässt sich deaktivieren.

Eine Drehung der Verteilung um jeweils 0°, 90°, 180° und 270° ist möglich.

Abb. 10.13: Dialogfenster Darstellung>>Isometrie (links mit deaktivierter Farbdarstellung)

10.2.4 Kaustikdarstellung (2D-Darstellung)

Die Ergebnisse der Kaustikmessung können Sie mit dem Menüpunkt Darstellung>> Kaustik anzeigen. Die Abb. 10.14 zeigt auf der linken Seite die berechneten Strahlparameter wahlweise auf Basis der 86 %-Radien oder die Momentenauswertung nach ISO 11146. In der Bildmitte zeigt die Grafik den Kaustikverlauf an; dabei sind die Strahlradien über der Strahlausbreitungsrichtung aufgetragen. Rechts ist schließlich die Falschfarbendarstellung jeweils einer - u. a. mit der Maus wählbaren - Messebene samt numerischer Ergebnisse eingeblendet, die für diese Ebene berechnet wurden.

Abb. 10.14: Dialogfenster Darstellung>>Kaustik

Die rote Linie stellt die Ausgleichskurve entsprechend des berechneten Fits dar, sie kann über das Kontrollkästchen *Fit* in der 2D-Darstellung eingeblendet werden.

Ausgleichskurve

Zur Auswertung der Kaustik wird eine hyperbolische Ausgleichskurve (ISO11146) an die Messwerte angepasst. Diese Ausgleichskurve beschreibt mathematisch die Propagation eines idealen Laserstrahls. Der Verlauf der Ausgleichskurve wird theoretisch bestimmt durch die folgenden Parameter:

- Normierte Beugungsmaßzahl M² bzw. Strahlpropagationsfaktor
- Z-Position
- Fokusradius
- Rayleighlänge

Normierte Beugungsmaßzahl M² (bzw. der Strahlpropagationsfaktor K= $\frac{1}{M^2}$)

Die normierte Beugungsmaßzahl beschreibt, wie gut sich der betreffende Laserstrahl im Verhältnis zum Grundmode fokussieren lässt. Der Grundmode ist der theoretisch bestmögliche Strahl und hat eine Beugungsmaßzahl von 1. Alle anderen Strahlen haben größere Werte. Für Schweißlaser (CO₂) liegen sie bei 2 bis 5. Bei Schneidlasern (CO₂) sind Werte von 1,1 bis 2,5 üblich. Bei Strahlquellen mit höherer Laserleistung sind die Beugungsmaßzahlen im Allgemeinen kleiner als bei Quellen mit geringer Leistung.

Z-Position

Dieser Wert gibt die Lage der Fokuspunkte in der z-Richtung an. Da die Ausgleichskurve alle Messpunkte berücksichtigt, ist die berechnete z-Position nicht zwingend am Ort des kleinsten gemessenen Strahlradius. Angegeben werden die Gerätekoordinaten. Hinweise zur absoluten Lage im Raum finden Sie im Kapitel 22 auf Seite 95. Unter Umständen auch auf Basis einer TCP-Kalibrierung (Option).

Fokusradius

Der Fokusradius ist der kleinste Strahlradius in der Kaustik. In der Regel ist dieser Wert dem kleinsten gemessenen Wert ähnlich.

Aus verschiedenen Gründen kann es vorkommen, dass keine Anpassung an die Messwerte durchgeführt wurde. Dies ist dadurch zu erkennen, dass die Ausgleichskurve grob neben den Messwerten liegt. In diesem Fall sind die Parameter der angepassten Ausgleichskurve zu verwerfen.

Die Bewertungsfunktion (siehe Seite 53) gibt Ihnen hierzu nähere Informationen.

Rayleighlänge

Die Rayleighlänge ist ein abgeleiteter Parameter und beschreibt den Abstand vom Fokus in z-Richtung,

bei dem der Strahlradius um den Faktor $\sqrt{2}$ (=1,41) zugenommen und die Strahlfläche um den Faktor 2 zugenommen hat. Die Rayleighlänge wächst mit dem Strahlpropagationsfaktor und der Brennweite der Fokussieroptik (siehe Kapitel 22 auf Seite 95). Die doppelte Rayleighlänge ist ein ungefährer Anhaltspunkt, bis zu welcher Materialdicke (Metall) eine Bearbeitung mit der eingesetzten Optik möglich ist.

Damit die angepassten Werte eine möglichst hohe Aussagekraft besitzen, ist die Messung über einen z-Bereich von mindestens zwei Rayleighlängen durchzuführen. Besser ist ein Bereich der vierfachen Rayleighlänge - wie er auch in der ISO 11146 gefordert wird, ideal sind 5 bis 6 Rayleighlängen. Dieser Forderung steht jedoch die manchmal schnell sinkende Leistungsdichte des zu vermessenden Laserstrahls gegenüber. Bei einem Abstand von zwei Rayleighlängen vom Fokus ist die Leistungsdichte auf ein Viertel abgesunken.

Die Kaustikmessung besteht in diesem Fall aus einem Kompromiss zwischen dem gewünschten Messbereich in der z-Richtung und der zu einer einwandfreien Messung notwendigen Leistungsdichte (Signal/Rausch-Verhältnis).

Ergebnisse X,Y (2.Moment)	×		
- Kaustikergebnis:			
Fokusradius:	84.704 [µm]		
Fokusradius X':	85.129 [µm]		
Fokusradius Y':	82.598 [µm]		
K:	0.91		
Kx:	0.90		
Ky:	0.93		
M²:	1.10		
M²x:	1.11		
M²y:	1.08		
Position Z:	89.84[mm]		
Position Z(X):	90.11[mm]		
Position Z(Y):	89.58[mm]		
Rayleighlän.:	1.925 [mm]		
Rayleighlänge X:	1.941 [mm]		
Rayleighlänge Y:	1.871 [mm]		
Divergenz:	88.003 [mrad]		
Divergenz X:	87.737 [mrad]		
Divergenz Y:	88.285 [mrad]		
Strahlpar.:	3.727[mm*mrad]		
Strahlparameter X:	3.734[mm*mrad]		
Strahlparameter Y:	3.646[mm*mrad]		
Fokus-Symmetrie(nx/ry):	1.03		
Astigmatische Differenz:	0.28		
Strahlrichtung:	3.763 [mrad]		
Qualität des Fit-Algorithmus:	0.9944		
Ausblenden			

Abb. 10.15: Ergebnisfenster Kaustik>>Details

Zur Untersuchung asymmetrischer Strahlen können die Abmessungen der Hauptachsen der Strahlen bestimmt werden. Ausgehend von diesen Werten berechnet das Programm auch richtungsabhängige Strahlpropagationsfaktoren und Strahllagewerte. Die zugehörigen Kurven werden über die beiden Kontrollkästchen Radius X, Y eingeblendet, die Zahlenwerte stellt das Detailmenü bereit.

Bewertung

Diese Funktion prüft, ob die Ergebnisse und Einstellungen der Kaustikmessung im zuverlässigen Bereich liegen.

Messungsbewertung			
Abweichung (<3*0.26%):	< ←		In Ordnung
Füllfaktor (0.35 <f<0.70):< td=""><td>x</td><td>[5 15]</td><td>Nicht in Ordnung</td></f<0.70):<>	x	[5 15]	Nicht in Ordnung
Z-Bereich (>4*Zr):	x		(in den Messebenen 5 und 15)
Messebenen# (>3/Zr):	1		
(ZMin+Zr) < Z0 < (ZMax-Zr):	x		
Signal/Noise-Rate (>=40)	×		
Signalübersteuerung (<4000):	×		
Messung:	x		
	(Ausblenden)		

Abb. 10.16: Ergebnisfenster der Bewertungsfunktion

Unter "Abweichung" wird die mittlere relative Standardabweichung des Kaustikfits von den Radien nach der 2. Momentmethode aufgeführt. Ein "Häkchen" (\checkmark) wird gesetzt, wenn die Standardabweichung kleiner 3,5 % ist und wenn keiner der Messwerte außerhalb eines Bereiches von ± 3 * Standardabweichung liegt.

Bewertete Funktionen	Prüfkriterium	Positive Bewertung ✓
Abweichung	Mittlere relative Standardabweichung des Kaustikfits nach der 2. Momentmethode	Standardabweichung < 3,5 %, kein Messwert außerhalb eines Bereiches von \pm 3 * Standardabweichung
Füllfaktor	Bezeichnet das Verhältnis Strahldurchmes- ser zu Messfenstergröße	Im Bereich 0,3 - 0,6
Z-Bereich	Messbereich in z-Richtung	Mindestens 4 Rayleighlängen
Messebenen	Anzahl der Messebenen pro Rayleighlänge	Mindestens 3 Messebenen pro Rayleighlänge
$(Z_{Min}+Z_r) < Z_0 < (Z_{Max}-Z_r)$	Mindestmessbereich oberhalb und unter- halb der Fokusebene	Der Fokus liegt innerhalb des Mindest- messbereiches und dieser Bereich beträgt mindestens eine Rayleighlänge in jede z-Richtung.
Signal/Noise-Rate	Untersucht das Signal/Rausch-Verhältnis	FocusMonitor: S/N > 40
Signalübersteuerung	Untersucht den max. Leistungsdichtewert	Unterhalb von 4000 Counts

Tab. 10.2: Kriterien für die Bewertung

Sind alle Kriterien erfüllt, haben die Messergebnisse eine hohe Zuverlässigkeit. Die absolute Genauigkeit lässt sich aus der Standardabweichung des Fits nicht angeben, da zusätzlich sämtliche systematischen Messfehler sowie die Genauigkeit der Kalibrierung in den Absolutfehler eingehen.

Beim FocusMonitor können verschiedene Detektoren eingesetzt werden. Daher wird nicht direkt die Amplitude, sondern das Signal/Rausch-Verhältnis (S/N-Verhältnis) bewertet, da unterschiedliche Detektoren ein unterschiedliches Rauschen haben können.

Für die Bewertung wird der im Menü Messung>>Sensorparameter eingestellte Detektor herangezogen. Liegt das S/N-Verhältnis über 40:1, so wird ein grünes Häkchen (✓) angezeigt. Ein rotes Kreuz (×) zeigt ein S/N-Verhältnis von unter 25:1 an; dabei können Rauschanteile die Messunsicherheit für den Strahldurchmesser und abgeleitete Größen erhöhen.

Zeigt nur die letzte, äußerste Ebene einer Kaustik ein schlechteres Signal/Rausch-Verhältnis, so kann man in solchen Fälle oft trotzdem noch belastbare Ergebnisse erhalten.

Sind mehrere Ebenen betroffen, so kann eine genauer auf die Anwendung zugeschnittene Messspitzen– Detektor-Kombination ein höheres S/N-Verhältnis liefern.

10.2.5 Isometrie 3D

Diese Funktion erzeugt die dreidimensionalen Darstellungen der Leistungsdichteverteilung einer Ebene und aller Ebenen in Falschfarben.

Das Darstellungsfenster ist zweigeteilt. Links wird die Kaustik, rechts die Leistungsdichteverteilung in einer Ebene dargestellt. Die horizontale Größe der Einzelfenster können Sie durch Ziehen des Trennbalkens mit der Maus verändern.

Die Grafiken können Sie mit der linken Maustaste um alle drei Achsen stufenlos drehen, mit der rechten Maustaste im Fenster frei positionieren.

Abb. 10.17: Darstellung in 3D

1	3D-Darstellung der Ebene	Blendet die 3D-Darstellung der Leistungsdichteverteilung in der Ebene vollflächig in das Darstellungsfenster ein.
2	3D-Darstellung der Kaustik	Blendet die 3D-Darstellung der Kaustik zusätzlich in das Darstellungsfenster ein.
3	Vergrößerung in der Ebene	Im linken Teil des Darstellungsfensters wird eine Vergrößerung der rechts abgebildeten Ebene eingeblendet (den gewünschten Bereich können Sie mit der linken Maustaste im rechten Fenster anklicken).
4	Rotation	Löst eine Rotation beider Grafiken um die z-Achse aus.
5	Ebenenauswahl	Wählen Sie hier die darzustellende Ebene ein (Sie können die gewünschte Ebene auch einfach in der 3D-Kaustik mit der linken Maustaste auswählen).
6	Zoom	Schieberegler für eine stufenlose Vergrößerung der Darstellung.
7	Kontur	Schieberegler für einen Konturbeschnitt entlang der Leistungsdichte.

10.2.6 Übersicht 86 % bzw. 2. Moment

Für die Radiusdefinition gibt es zwei wesentliche Bestimmungsmöglichkeiten:

- Bestimmung der Strahlradien nach der 86% -Leistungsdefinition (Kap. 22.2.4 auf Seite 100)
- Bestimmung der Strahlradien nach der 2. Momentenmethode (ISO 11146) (Kap. 22.2.3 auf Seite 99)

Weitere Möglichkeiten stellt die Software optional zur Verfügung (siehe Kapitel 22.2.5 auf Seite 101).

😐 Kaustik 3750.foc- 869	% Übersicht				
Ebene:	Ebene 0	Ebene 1	Ebene 2	Ebene 3	Ebene 4
Radius [mm]	0.431	0.398	0.352	0.313	0.269
Position X [mm]	-0.010	-0.023	0.007	0.002	0.005
Position Y [mm]	-0.106	-0.109	-0.098	-0.102	-0.100
Position Z [mm]	75.000	75.500	76.000	76.500	77.000
Nullwert [A/D-Cnts]	149.750	149.500	149.250	149.250	149.750
Leistung [kW]	0.900	0.900	0.900	0.900	0.900
Radius inten. [kW/cm²]	47.404	51.489	65.831	82.461	119.463
Peak inten. [kW/cm²]	280.498	435.540	547.987	586.358	769.836
Datum:	20.12.2010	20.12.2010	20.12.2010	20.12.2010	20.12.2010
Uhrzeit:	14:54:26	14:54:34	14:54:48	14:54:56	14:55:10
Brennweite [mm]	200.000	200.000	200.000	200.000	200.000
Z-Achsen Offset	0.000	0.000	0.000	0.000	0.000
X-Achsen Offset	0.000	0.000	0.000	0.000	0.000
Y-Achsen Offset	0.000	0.000	0.000	0.000	0.000
Koordinatenrotation [dg.]	0.000	0.000	0.000	0.000	0.000
Wellenlänge [µm]	1.064	1.064	1.064	1.064	1.064
Füllfaktor	0.431	0.398	0.470	0.418	0.538
Bemerkung:					

Abb. 10.18: Ergebnisfenster Darstellung>>Übersicht (86%)

🐵 Kaustik 3750.foc- 2. Moment Übersicht								
Ebene:	Ebene 0	Ebene 1	Ebene 2	Ebene 3	Ebene 4			
Radius [mm]	0.451	0.430	0.368	0.332	0.272			
Radius X [mm]	0.449	0.428	0.369	0.331	0.273			
Radius Y [mm]	0.453	0.432	0.367	0.332	0.272			
Winkel [°] (x/y-Richtung)	-20.8	10.1	33.5	17.1	37.2			
Position X [mm]	-0.006	-0.020	0.008	0.001	0.003			
Position Y [mm]	-0.103	-0.113	-0.098	-0.104	-0.104			
Position Z [mm]	75.000	75.500	76.000	76.500	77.000			
Nullwert [A/D-Cnts]	149 750	149 500	149 250	149 250	149 750			
Leistung [kW]	0.900	0.900	0.900	0.900	0.900			
Peak inten. [kW/cm²]	280,498	435,540	547.987	586.358	769.836			
Datum:	20.12.2010	20.12.2010	20.12.2010	20.12.2010	20.12.2010			
Uhrzeit:	14:54:28	14:54:34	14:54:48	14:54:56	14:55:10			
Brennweite [mm]	200.000	200.000	200.000	200.000	200.000			
Z-Achsen Offset	0.000	0.000	0.000	0.000	0.000			
X-Achsen Offset	0.000	0.000	0.000	0.000	0.000			
Y-Achsen Offset	0.000	0.000	0.000	0.000	0.000			
Koordinatenrotation [dg.]	0.000	0.000	0.000	0.000	0.000			
Wellenlänge [µm]	1.064	1.064	1.064	1.064	1.064			
Radius X' [mm]	0.449	0.429	0.369	0.331	0.272			
Radius Y' [mm]	0.452	0.432	0.368	0.332	0.272			
Füllfaktor	0.451	0.430	0.491	0.442	0.545			
Elliptizität (Rmin/Rmax)	0.991	0.992	0.994	0.996	0.997			
RadiusX/RadiusX'	0.999	1.000	1.002	1.000	1.001			
RadiusY/RadiusY'	1.001	1.000	0.998	1.000	0.999			
3*RadiusX'/WindowsizeX	0.674	0.643	0.738	0.662	0.817			
3*RadiusY'/WindowsizeY	0.679	0.648	0.736	0.665	0.817			
Bemerkung:								

Abb. 10.19: Ergebnisfenster Darstellung>>2. Moment

Wenn das Messsignal das Nullniveau nur wenig überschreitet, werden die Messergebnisse nicht schwarz sondern grau dargestellt. In solchem Fall prüfen Sie, ob die Messwerte vertrauenswürdig sind oder verworfen werden müssen und die Messung eventuell mit anderen Einstellungen wiederholt wird.

Die Einträge Leistung, Brennweite und Wellenlänge, insbesondere in den Kommentarzeilen können auch nach einer Messung noch verändert werden. Dazu dient im Menüpunkt **Messung>>Umgebung** die Schaltfläche **Aktualisieren**.

10.2.7 Symmetrieprüfung

Dieses Darstellungsmenü prüft die Rotationssymmetrie der Leistungsdichteverteilung eines Laserstrahls. Es kann z. B. in Verbindung mit dem Monitorbetrieb zur Justierung von Laserresonatoren benutzt werden. Im Folgenden werden in den Abbildungen Abb. 10.21 und Abb. 10.22 zwei Beispiele für die möglichen Resultate der Symmetrieprüfung an einem elliptischen Strahl gezeigt.

Abb. 10.20: Leistungsdichteverteilung eines elliptischen Strahls

Die in Abb. 10.20 dargestellte Leistungsdichteverteilung eines elliptischen Strahls ergibt mit der Symmetrieprüfung folgende Resultate.

Abb. 10.21: Darstellung in kartesischen Koordinaten.

Die Abszisse in Abb. 10.21 zeigt den Winkel und die Ordinate den Strahlradius mit den Schnittlinien bei verschiedenen Leistungen zwischen 86 % und 10 % der Gesamtleistung. Auf dem Bildschirm erscheinen die Kurven in unterschiedlichen Farben. Der Radius ist in Pixel-Koordinaten angegeben. Das Minimum und das Maximum der Radiuswerte kann ausgewählt werden. Auf der rechten Seite ist die Standardabweichung der verschiedenen Radiuswerte angezeigt. Diese Werte geben eine genaue Information über die Symmetrie der Strahlverteilung.

Gut justierte Resonatoren erreichen Standardabweichungen im Bereich von 3 % bis 5 %. Teilweise sind sogar Werte im 1 % bis 2 %-Bereich möglich.

Eine Darstellung in Polarkoordinaten ist ebenfalls möglich (Abb. 10.22). Die eingezeichneten Linien enthalten 86 % bis 10 % der detektierten Leistung. Auf dem Bildschirm haben die Graphen verschiedene Farben. x- und y-Achse skalieren in Pixelwerten.

Abb. 10.22: Symmetrieprüfung in Polarkoordinaten

10.2.8 Feste Schnitte

Angezeigt werden die Schnittlinien bei verschiedenen Leistungsniveaus. Ausgewählt sind Schnittlinien bei: 86 %, 80 %, 60 %, 40 %, 20 % und 10 % der Gesamtleistung.

In dieser Darstellung ist es auch möglich Abstände auszumessen, in dem man mit der Maus die Start- und Endpunkte der gewünschten Strecke anklickt.

Abb. 10.23: Darstellungsfenster Feste Schnitte

10.2.9 Variable Schnitte

Hier wird die räumliche Leistungsdichteverteilung anhand frei wählbarer Schnitte dargestellt. Es können Schnitte in x- und y-Richtung sowie in Leistungsdichte-Koordinaten (A/D-Wandler-Counts) durchgeführt werden. Die Lage der Schnitte ist durch Schieberegler oder per Tastatur einstellbar.

😳 Kaustik 3750.foc Ebene 0	- • •
X-Leistungsdichte Schnitt	Ebene: Global
X-Y Schnitt	Y-Leistungsdichte Schnitt
lofo:	
X-Schnitt: 1.018mm Y-Schnitt: 0.989mm ADC: 189	Auflösung: 64 x 64 Fenster [mm]: 2 x 2 Verstärkung: 0.00 Mittelungsanzahl: 1
Intensität: 47.40 KW/cmi	Drehzahl: 3750.00
Redius: 0.404	RadiusKorrektur: Nein
10.431 mm	Manipulation: Keine
Volumen: 76398	Gerät Tvo: EM
Tip sensitivity: 828 cts/Mw	Detektor:Photodet-1
CCD Info	Software Vers.:v2.9.alpha017

Abb. 10.24: Darstellungsfenster Variable Schnitte

Einstellen per Tastatur:

- für die x-Richtung über die Taste x, um den Wert zu vergrößern und <shift>x, um ihn zu verkleinern.
- für die y-Richtung über die Taste y, um den Wert zu vergrößern und <shift>y, um ihn zu verkleinern.
- für die Leistungsdichte (Intensität) über die Taste i um den Wert zu vergrößern und **<shift>i**, um ihn zu verkleinern.

Im Bereich links unten werden die aktuellen Schnittkoordinaten, Leistungsdichten, der durch den Schnitt erzeugte Radius und das relative Volumen angezeigt. In der untersten Zeile wird die Messspitzenempfindlichkeit angezeigt. Die Werte werden berechnet basierend auf der korrekt eingegebenen Laserleistung. Rechts oben kann man auf die aus Kapitel 10.2.1 bekannten Skalierungen umschalten. Darunter befindet sich ein Eingabefeld, in dem Sie den zur Radiusbestimmung erwünschten Leistungsabfall (-einschluss) eintragen können. Neben diesen Funktionen bietet dieses Fenster noch eine Menge weitere Informationen über die Bedingungen, unter denen gemessen wurde.

Ebenso werden die Verstärkung, die Zahl der Mittelungen sowie die Rotationsgeschwindigkeit während der Messung angezeigt.

10.2.10 Graphische Übersicht

Das Darstellungsfenster Graphische Übersicht bietet viele Möglichkeiten, die Messwerte aus den einzelnen Messebenen darzustellen.

Über der x-Achse können die Leistung, die Zeit, die Ebenen oder die z-Position aufgetragen werden. Für die y-Achse stehen die Daten des Radius, der x bzw. y- Position, der Winkel und der Elliptizität zur Verfügung. Insgesamt kann dieses Fenster 16 verschieden Graphen darstellen.

Abb. 10.25: Grafische Übersicht

10.2.11 Farbtafeln

Es sind verschiedene Farbtabellen verfügbar. Sie können zwischen den Farbtabellen hin- und herschalten. So kann die Zuordnung von A/D-Wandlerwerten und den verschiedenen Farbskalen variiert werden. Dies ist wichtig für jede Falschfarbendarstellung.

Drei Einstellungen sind möglich:

- lineare Farbtabelle (Grundeinstellung)
- Farbtabelle analog der Wurzelfunktion
- Farbtabelle analog der vierten Wurzelfunktion

Diese Funktionen können besonders bei der Analyse geringer Variationen in der Nähe des Nullniveaus hilfreich sein; z. B. zur Analyse von Beugungsphänomenen.

10.2.12 Position

In diesem Menü können Sie den Messkopf in eine gewünschte z- oder y-Position verfahren, zum Beispiel:

- in die Parkposition (Park Position, z=0 y=0)
- in die gemessene Fokusebene (Fokus Position)
- in eine benutzerdefinierte z-Position (General Z-Position)
- in eine benutzerdefinierte y-Position (General Y-Position)

Als Referenz für die Abstände können Sie beim Standardeinbau im Auswahlfeld **Mode** den Schlitten (Auswahl **Schlittenoberkante**) oder die Messspitze (Auswahl **Pinhole**) wählen. Ist Ihr Gerät über Kopf eingebaut, müssen Sie das Kontrollkästchen **Umgedreht** aktivieren. Dann werden die Abstände auf die Messspitze oder die Schlittenunterkante (*Abdeckung auf der Unterseite*) referenziert.

Position	23
Z-Position Einstellung : General Z-Position 20 [mm]. Fokus Position 89,844 [mm]. Park Position Umgedreht Mode: pinhole Fahren Fokus Aktualisieren	
Y-Position Einstellung: General Y-Position [mm]. Fahren	

Abb. 10.26: Dialogfenster Darstellung>>Position

10.2.13 Evaluation (Option)

Mit dieser Bewertungsfunktion könnnen Sie verschiedene Parameter einer gemessenen Kaustik (.foc-Datei) mit vorgegebenen Grenzwerten (.pro-Datei) vergleichen und bewerten. Das Bewertungsergebnis wird optisch mit einem LED-Symbol dargestellt (rot=schlecht, grün=gut). Das Gesamtergebnis (Feld *Ergebnis*) wird nur dann als gut bewertet, wenn die Grenzen aller kritischen Parameter (1) eingehalten sind.

😶 Kaustik 3750.foc					- • •
Item Name	Value	Min	Max	Ev	Summe
🗹 📩 Focus radius (mm)	0.146	0.090	0.150	0	Parameter in Grün: 3
Focus radiusX [mm]	0.147	0.090	0.150	0	Parameter in Rot: 4
Focus radiusY (mm)	0.145	-0.015	0.150	•	Kritisch in Grün: 1
Focus positionX [mm]	0.012	-0.400	0.400		Kritisch in Rot: 2
Focus positionY [mm]	-0.112	-0.400	0.400		
🗹 🗙 Focus positionZ [mm]	79.565	5.000	6.000	•	
🗹 К	0.024	0.700	0.950	•	- Erzebnie
Kx Kx	0.024	0.700	0.950		Ligebilis
🔲 Ку	0.025	0.700	0.950		
Rayleigh length [mm]	1.538	2.000	5.000	•	
Rayleigh lengthX [mm]	1.561	2.000	5.000		Schlecht
Rayleigh lengthY (mm)	1.515	2.000	5.000		
Astigmatic difference	0.006				Öffne Doc
🗹 ☆ Average power [KW]	0.900	0.320	0.360	•	
					Öffne Profil
					Kaustik Sec. Moments 💌
					Evaluiere

Abb. 10.27: Dialogfenster Evaluation

Die Parameter, die Grenzwerte und die Kennzeichnung als kritischer Wert werden in einer Profildatei vorgegeben (Textdatei, siehe Beispieldatei in Abb. 10.28).

	1	//profile format
	2	//"{parameter name} (checked critical min max)
	3	//"parameter name is predefined, please don't change it
 ∕ -	4	
_	5	//"checked flag", indicate if this parameter will be evaluated, can be 1 or 0
	6	//"critical flag", indicate if this parameter is critical, can be 1 or 0
A-	7	//"min", min value of the boundary
~	8	//"max", max value of the boundary
	9	{Focus radius [mm]} (1 1 0.27 0.33)
	10	{Focus radiusX [mm]} (1 0 0.28 0.37)
	11	{Focus radiusY [mm]} (1 0 0.28 0.37)
	12	{Focus positionX [mm]} (0 0 -0.3 0.3)
	13	{Focus positionY [mm]} (0 0 -0.3 0.3)
	14	{Focus positionZ [mm]} (1 1 12.0 14.0)
	15	{K} (0 0 0.19 0.30)
	16	{Kx} (0 0 0.2 0.28)
	17	{Ky} (0 0 0.2 0.28)
	18	{Rayleigh length [mm]} (0 0 5.0 8.0)
	19	{Rayleigh lengthX [mm]} (0 0 5.0 8.0)
	20	{Rayleigh lengthY [mm]} (0 0 5.0 8.0)
	21	{Astigmatic difference} (1 1 -0.2 0.2)
	22	{Average power [KW]} (1 1 0.5 0.55)

Abb. 10.28: Beispiel für eine Profildatei

So führen Sie eine Bewertung durch:

- 1. Klicken Sie auf die Schaltfläche Öffne Doc... und wählen Sie Ihre Messdatei aus (.foc-Datei).
- 2. Klicken Sie auf die Schaltfläche Öffne Profil... und wählen Sie Ihre Profildatei aus (.pro-Datei).
- 3. Wählen Sie in der Auswahl *Kaustik* die gewünschte Radiusdefinition.
- 4. Klicken Sie auf die Schaltfläche Evaluiere.

10.3 Datei

Dieses Menü umfasst unter anderem die Verwaltung von Mess- und Einstellungsdaten.

10.3.1 Neu

Mit *Neu* erstellen Sie eine neue Datei.

10.3.2 Öffnen

Mit Öffnen öffnen Sie eine ausgewählte Datei.

10.3.3 Speichern

Die aktuell geöffnete Datei wird gespeichert. Der Standard-Dateityp ist ein binäres Datenformat mit minimalem Speicherbedarf. Die Dateiendung für eine Messdatei diesen Typs ist '.foc'. Alternativ dazu ist es möglich, die Daten in ein ASCII-Format zu speichern mit der Erweiterung '.mdf'. Informationen zum Dateiformat '.mdf' finden Sie im Anhang (Kap. 21.2 auf Seite 93). Nur Dateien mit diesen Formaten können vom Programm geöffnet werden.

10.3.4 Speichern unter

Sie müssen einen Dateinamen vergeben, den Speicherort und das Dateiformat wählen.

Speichern Sie Messdaten nur mit den Erweiterungen ".foc" oder ".mdf". Sie können Messdaten nur betrachten, wenn Sie die entsprechende Datei explizit in der Werkzeugleiste ausgewählt haben.

10.3.5 Export

Schreibt die Pixelinformation der Leistungsdichteverteilung in eine Excel-Tabelle (*.xls). Alternativ können die numerischen Ergebnisse aus einer ".foc"-Datei in eine Tab-separierte Textdatei (*.pkl) gespeichert werden, die in Microsoft Excel importiert werden kann.

10.3.6 Messeinstellungen laden

Bereits gespeicherte Einstellungen können Sie mit *Messeinstellungen laden* wieder zu aktuellen Einstellungen machen. Die standardmäßige Erweiterung für eine Einstellungsdatei des FocusMonitor ist '.ptx'.

10.3.7 Messeinstellungen speichern

Sie speichern die aktuellen Messeinstellungen (.ptx-Datei).

10.3.8 Protokoll

Sie können die berechneten Messresultate aus einer einzelnen Ebene direkt in eine Textdatei schreiben. Dabei werden gespeichert:

- Datum und Zeit der Messung
- Strahllage und Strahlradius (nach 86 %- und 2. Moment Definition)

Dazu aktivieren Sie das Kontrollkästchen *Schreiben*. Dann können Sie in das Feld *Dateiname* direkt den Namen eingeben oder mit der Schaltfläche *Auswählen* das Standardauswahlmenü nutzen.

Protokoll	×
Protokolldatei	
Dateiname: C:\Temp\Proto.txt	Auswählen
	ОК

10.3.9 Drucken

Sie können direkt aus dem Programm heraus einen Drucker ansprechen. Das aktuelle Fenster kann mit dem Menüpunkt **Drucken** im Menü **Datei** gedruckt werden. Dabei sind auch Einstellungen von Formaten usw. mit dem Menüpunkt **Eigenschaften** möglich.

10.3.10 Vorschau Drucken

Zeigt in einer Vorschau wie der Druck auf Papier aussehen wird.

10.3.11 Zuletzt geöffnete Datei

Auswahl der zuletzt bearbeiteten Dateien.

10.3.12 Ende

Beendet das Programm.

10.4 Bearbeiten

10.4.1 Kopieren

Mit Hilfe der Kopierfunktion ist ein direkter Export von Grafiken in andere Programme möglich. Der Inhalt des aktuellen Fensters wird dabei in die Windows-Zwischenablage übertragen.

10.4.2 Ebene löschen

Der Inhalt der aktuell angezeigten Messebene des Messdatensatzes, der in der Werkzeugleiste ausgewählt ist, wird gelöscht.

10.4.3 Alle Ebenen löschen

Der Inhalt aller Messebenen des Messdatensatzes, der in der Werkzeugleiste ausgewählt ist, wird gelöscht.

10.5 Kommunikation

10.5.1 Freie Kommunikation

Mit Hilfe dieses Menüs können Sie die Kommunikation über den PRIMES-Bus überwachen. Außerdem werden hier die Einstellungen zur Kommunikation vorgenommen (siehe auch "9.4 Ethernetverbindung einrichten" auf Seite 32).

Freie Kommunikation		×				
Mode Seriell O TCP O) USB-To-Seriell 🔽 Zweite IP	Parity Primes Geräte Suchen				
Serielle Schnittstelle Von 64 An 161	sdelay 01000	✓ Senden				
Von 64 An 168	Init 110	✓ Senden				
Von 64 An 113	ql	▼ Senden				
Hex Code:	Com Port: com1	▼ Testen				
TCP IP: 192.168.116.8	3 Port: 6001 Verbinden	Schließen Speichern				
MAC: 00 : 00 : 00	: 00 : 00 : 00 Finde IP	Lösche IP IP Zuweisen				
Befehl		Senden				
₽: 192.168.116.82	2 Port: 6001					
Befehl		Senden				
Bus monitor 161> 64: AD/W-Parameter 20.4400020000200003000040000800012000160002400032000481 161> 64: AD ODrehzahl31.25000 62.50000 125.00000 Umfang0000319186 Begrenzung0000000011 64> 163: qr 64> 152: Reset neu 64> 152: Reset neu 64> 144: Reset neu 64> 192: qr 64> 192: qr 64> 192: qr 64> 192: qr 64> 192: qr 64> 30: qr E 64> 102: qr						
Messdaten anzeigen	Löschen Copy Schließer	Bus-Protokoll schreiben				

Abb. 10.29: Dialogfenster Kommunikation>>Freie Kommunikation

10.5.2 Liste gesuchter Geräte

Jedes Gerät von PRIMES hat eine bestimmte Bus-Adresse. Soll mit der LaserDiagnose-Software ein Gerät bedient werden, muss diese Adresse hier eingetragen sein. Hier können Sie auch Adressen hinzufügen oder entfernen.

10.6 Skript

Mit Hilfe von Skripten lassen sich komplexe Messabläufe automatisch steuern.

Skripte sind Programme, die in diversen Skriptsprachen geschrieben sind. Skripte werden fast ausschließlich in Form von Quelltextdateien ausgeliefert, um so ein einfaches Bearbeiten und Anpassen des Programms zu ermöglichen.

10.6.1 Editor

Mit dem Skripteditor können Sie Skripte erstellen, die z. B. komplexe Messabläufe automatisch steuern. Ein Beispiel ist in Abb. 10.30 gezeigt - die Prozedur zur Strahlsuche mit dem BeamMonitor.

Zum Öffnen eines Skripts muss das Öffnen-Symbol angeklickt werden, danach kann eine Datei ausgewählt und per 🕨 - Schaltfläche abgespielt werden. Die Schaltfläche 🔟 stoppt und 🔳 beendet das Skript.

Abb. 10.30: Skript für die Strahlsuche-Prozedur des BeamMonitor

10.6.2 Auflisten

Hier werden alle vorhandenen Skripte aufgelistet

Abb. 10.31: Liste der vorhandenen Skripte

10.6.3 Python

Startet den Python-Editor. Die Grafische Benutzeroberfläche ist identisch mit der in Abb. 10.30 dargestellten. Python ist eine Programmiersprache mit effizienten abstrakten Datenstrukturen und einem einfachen, aber effektiven Ansatz zur objektorientierten Programmierung. Python ist sowohl für Skripte als auch für schnelle Anwendungsentwicklung sehr gut geeignet.

Detaillierte Informationen zur Skriptsteuerung gibt die separate Beschreibung "Dokumentation zur Python-Skript-Steuerung der PRIMES LaserDiagnoseSoftware".

11 Messen

Dieses Kapitel beschreibt die manuelle Bedienung des PRIMES-Laser-Diagnosesystems und erklärt, wie die besten Resultate zu erzielen sind.

Eine automatische Messung mit dem FocusMonitor kann über das PRIMES-SPS-Interface von der Anlagensteuerung aus gestartet werden. In diesem Fall übernimmt eine Ablaufsteuerung, z. B. über ein Skript, den gesamten Messbetrieb. Die Arbeit mit der Skriptsteuerung ist in der zugehörigen Dokumentation beschrieben.

🚹 GEFAHR

Verletzungsgefahr durch Laserstrahlung

Im Messbetrieb entsteht Streustrahlung.

- Tragen Sie Laserschutzbrillen (OD 6), die an die verwendete Laserwellenlänge angepasst sind und entsprechende Schutzkleidung.
- Sorgen Sie f
 ür eine ausreichende Abschirmung der Streustrahlung und die vollst
 ändige und sichere Absorption der Strahlung, die das Ger
 ät passiert.
- Sorgen Sie für den senkrechten Einfall des Strahles in das Messgerät.
- Halten Sie im Messbetrieb einen Sicherheitsabstand von 1 Meter zum FocusMonitor ein!

11.1 Spezielle Sicherheitshinweise

Verletzungsgefahr durch rotierende Bauteile

Die Messspitze des FocusMonitor rotiert im Messbetrieb mit hoher Drehgeschwindigkeit. Auch nach Abschalten des Motors rotiert die Messspitze noch eine gewisse Zeit nach.

Nicht in den Strahleneingang des Messgerätes fassen oder Gegenstände hineinhalten (siehe Abb. 11.1).

Nach Abschalten des Motors den Stillstand der Messspitze abwarten.

VORSICHT

Quetschgefahr

Der Messkopf des FocusMonitor ist in der z- und y-Achse gegenüber dem Gehäuse verfahrbar.

Im Messbetrieb nicht in den Verfahrbereich des Messkopfes fassen (siehe Abb. 11.2).

Abb. 11.1: Gefahr durch rotierende Bauteile

Z-Achse y-Achse
y-Achse

Abb. 11.2: Quetschgefahren am FocusMonitor

Auf dem Gerät sind mögliche Gefahrenstellen für Handverletzungen mit folgendem Piktogramm gekennzeichnet:

11.2 Voraussetzungen

Die nachfolgende Beschreibung setzt voraus, dass

- die in Kapitel "1 Grundlegende Sicherheitshinweise" geforderten Schutzmaßnahmen getroffen worden sind
- die Messgeräte gemäß Kapitel "5 Montage" richtig ausgerichtet und stabil befestigt sind
- alle Komponenten des Messsystems gemäß Kapitel "6 Elektrischer Anschluss" angeschlossen sind
- die Software (LDS) installiert ist

11.3 Mögliche Messarten

11.3.1 Einzelmessung

Es wird nur eine Messung in einer Ebene durchgeführt. Die Einzelmessung können Sie automatisch oder manuell einrichten. Die Position und die Größe des Messfensters können Sie relativ zum maximalen Messbereich einstellen. Die Verstärkung ist getrennt einstellbar. Eine Falschfarbendarstellung ist möglich.

11.3.2 Kaustikmessung

Es werden mehrere Messungen in verschiedenen Ebenen der z-Achse durchgeführt. Die Parameter können Sie automatisch oder manuell im Menüpunkt Messung>>Messeinstellungen einstellen. Die Messung ermöglicht die direkte Bestimmung der Beugungsmaßzahl M² (Strahlpropagationsfaktors K).

Beim Messen mit dem Detektor DFY-PS+ müssen Sie vor der Kaustikmessung eine manuelle Einzelmessung durchführen (siehe Kapitel 11.5 auf Seite 74).

11.4 Kurzanleitung für eine erste Einzelmessung

Schalten Sie zuerst die Versorgungsspannung des Gerätes ein und warten Sie ca. 20 Sekunden. Starten Sie dann erst die Software.

Beim Ein- oder Ausschalten der Versorgungsspannung wird ein geräteinterner Reset-Zyklus gestartet, während dieser Zeit sind keine Messungen möglich!

- 1. Schalten Sie die Versorgungsspannung ein. Warten Sie ca. 20 Sekunden bis der geräteinterne Bootvorgang beendet ist.
- 2. Starten Sie die LaserDiagnoseSoftware. Die angeschlossenen Geräte werden innerhalb von 20 Sekunden erkannt und oben rechts in der Werkzeugleiste die Gerätesymbole eingeblendet.

	Gerätesymbole
PRIMES-DiagnoseSoftware - FocusMonitor 1	
tei Bearbeiten Messung Darstellung Kommunikation Skript Hilfe	
📑 👉 🐨 🧄 💷 💿 📱 Unbenannt 0	- FM

Wenn das Gerät **nicht** erkannt worden ist:

Öffnen Sie das Dialogfenster Kommunikation>>Freie Kommunikation :

- Wählen Sie den Mode "TCP" aus (die Option "Zweite IP" darf nicht aktiviert sein!).
- Geben Sie im Feld "TCP" die IP-Adresse Ihres Gerätes ein.
- Klicken Sie auf die Schaltfläche "Verbinden" (im Busmonitor erscheint "Connected").
- Klicken Sie auf die Schaltfläche "Speichern" (die Konfiguration wird gespeichert und muss beim Neustart der Software nicht erneut eingegeben werden).
- 3. Öffnen Sie das Dialogfenster Messung>>Umgebung und geben Sie ein:
 - A Die Brennweite
 - B Wählen Sie die Wellenlänge aus

PRIMES-DiagnoseSoftware - FocusMonitor 1										
l	Datei	Bearbeiten	Messung	Darstellung	Kommunikatio	-		_		1
l			Mess	umgebung		M	lessumgebung			
l			Sens	orparamet						
ł			Einst	ellung: Stra	che	111	Bemerkung:			
ľ						11				
						11				
						11				
						h.	, Brennweite:	200		
							7.1.1	0		
							Z-Achsen Uffset:	U	mm	
						Ш.	X-Achsen Offset:	0	mm	
						Ш.	Y-Achsen Offset:	0	mm	
						Ш.	Koordinatenrotation:	0	Grad	
						Ш.				
							wellenlange:	1.060 (Nd:Y.	AGJ 🖵 µn	В

- 4. Öffnen Sie das Dialogfenster Messung>>Sensorparameter und wählen Sie:
 - A Die Drehzahl, welche Sie anhand der Tabellen in Kapitel "14 Auswahl der Detektoren und Messspitzen" auf Seite 79 und des Datenblattes der Messspitze ermittelt haben.
 - B Die Auflösung X: 128 (empfohlen)
 - C Die Auflösung Y: 128 (empfohlen)
 - D Den Detektortyp (finden Sie auf dem Etikett des Detektors)

1

5. Öffnen Sie das Dialogfenster Messung>>Einzelmessung und wählen Sie

- A Die gewünschte z-Position
- B Fenstergröße in x-Richtung: empfohlene Einstellung X=8.0 mm Fenstergröße in y-Richtung: empfohlene Einstellung Y=8.0 mm
- C Falschfarben

- D Geben Sie im Bereich "Leist." die Laserleistung des zu messenden Strahls ein. Ermitteln Sie die zu erwartende Leistungsdichte und stellen Sie sicher, dass die Zerstörschwelle nicht überschritten wird (siehe Tab. 14.3 auf Seite 81 und Tab. 14.4 auf Seite 82).
- E Schalten Sie den Laser ein und klicken Sie auf die Schaltfläche "Start".

i

Die Schaltfläche **Strahlsuche** übernimmt beim FocusMonitor automatisch die Positionierung und die Auswahl des Messfensters. Dabei bleibt die z-Position jedoch unverändert und die Suche beschränkt sich auf den eingestellten Fensterbereich. War die Suche erfolgreich, wird das gefundene Messfenster eingeblendet. Es ist eine reine Suchfunktion. Die Messfenstergröße ist nicht optimiert.

Signalübersteuerung (bei Detektoren für NIR- und CO₂-Laser)

Ist das Signal zu groß, können Sie die Verstärkung reduzieren.

Detektortyp	Empfindlichkeit einstellbar
DFY-PS+	Ja (automatisch)
DFIG-PS+	Ja (automatisch)
DFCM+	Nein

Die Messergebnisse können Sie z. B. durch den Menüpunkt Darstellung>>Variable Schnitte visualisieren (siehe Abb. 11.3). Hier werden die Konturlinien der räumlichen Leistungsdichteverteilung in x- und y-Richtung angezeigt.

Abb. 11.3: Darstellung des Messergebnisses durch variable Schnitte

Unter Messung>>Messungebung>>Kommentar können Sie spezifische Angaben über die Strahlquelle, die verwendete Fokussieroptik usw. eintragen.

Im Menüpunkt Datei>>Speichern können Sie die Messdaten speichern.

11.5 Messen mit dem Detektor DFY-PS+/DFIG-PS+

Mit diesem neuen Detektor für das NIR ist ein großer Dynamikbereich auch ohne ein mechanisches Umschalten verfügbar.

Wegen seines großen Dynamikbereiches müssen Sie beim Messen mit dem Detektor DFY-PS+/DFIG-PS+ vor der Kaustikmessung eine manuelle Einzelmessung durchführen.

1. Öffnen Sie das Dialogfenster Messung>>Einzelmessung und wählen Sie

- A Den Messmode *Einzelmessung*
- B Die *Ebene 0*
- C Die Fenstergröße in x- und y-Richtung

- D Geben Sie im Bereich *el. Verst.* die Verstärkung –50 dB ein.
- E Geben Sie im Bereich *Leist.* die Laserleistung ein.
- F Schalten Sie den Laser ein und klicken Sie auf die Schaltfläche Start.

Wurde der Strahl nicht gefunden, wiederholen Sie die Messung unter schrittweisem Erhöhen der Verstärkung (z. B. in 5 dB- oder 10 dB-Schritten) solange, bis der Strahl gefunden wird.

Nachdem der Laserstrahl gefunden wurde und in dieser Ebene vermessen worden ist, können Sie eine Kaustikmessung starten.

- 2. Öffnen Sie das Dialogfenster Messung>>Kaustikmessung und wählen Sie
 - A Startebene *Ebene 0*.
 - B Mode Automatik.
 - C Falls aktiv, deaktivieren Sie die Option Maximale Fenstergröße
 - D Schalten Sie den Laser ein und klicken Sie auf die Schaltfläche Messung.

	Ka	ustikeinstellungen		×
A	+	Parameter Start: Ebene 0 🗸 Anzahl: 10 🗸	Z-Postion 35.0- 31.5- 28.0-	Globale Parameter Leist. ele.Verst.
В		Mode Manuelle Einstellung Automatik Strahlsuche Ebene 0	24.5- 21.0- 17.5- 14.0- 10.5- 7.0- 3.5-	800 -50 Mittelung: Keine
С		 ✓ Maximale Fenstergröße ✓ Symmetrisch 	0.0 Strahlsuche	1
		Einstellungen Details	0.0 20.0 Messun	g Stop Reset

12 Diskussion der Messergebnisse und Fehleranalyse

Für die korrekte Interpretation der gemessenen Werte und die Beurteilung der errechneten Ergebnisse müssen die spezifischen Eigenschaften des FocusMonitor berücksichtigt werden. Eine komfortable automatische Prüfung der Einstellungen und Ergebisse bietet die LaserDiagnoseSoftware mit der Bewertungsfunktion (siehe Kapitel Abb. 10.16 auf Seite 53).

Das Programm nutzt standardmäßig parallel zwei verschiedene Methoden zur Radiusbestimmung (weitere sind optional verfügbar).

86%-Definition

Der Strahlradius wird berechnet anhand des Strahlgebietes, in dem 86 % der gesamten Laserleistung eingestrahlt werden. Damit lässt sich der Radius eines Kreises bestimmen, der die selbe Fläche umschließt. Darauf basiert die hier verwendete Strahlradiusdefinition (siehe auch Kapitel "22 Grundlagen der Strahldiagnose" auf Seite 95).

Diese Definition ist jedoch nur sinnvoll, wenn es sich um einen rotationssymmetrischen Laserstrahl ohne Modulationsgebiete (partiell sehr geringe Strahlungsintensität) im Strahlgebiet handelt.

2. Momente Methode-Definition

Der Radius des Laserstrahls wird berechnet aus dem 2. Moment der Leistungsdichteverteilung des Strahls gemäß ISO 11146 (siehe auch Kapitel "22 Grundlagen der Strahldiagnose" auf Seite 95).

Manchmal ist es hilfreich, den Strahlradius manuell durch die 10 – 90 % Leistungsdichte in der *Variable Schnitte*-Darstellung zu bestimmen.

Optionale Radiusdefinitionen (siehe auch Kapitel 22.2.5 auf Seite 101):

- Schneidenmethode nach ISO 11146
- Spaltmethode nach ISO 11146
- Gaußfit-Methode
- 1/e²-Leistungsdichteabfall-Methode
- Leistungseinschluss-Methode mit frei definierbarem 1. Leistungseinschluss
- Leistungseinschluss-Methode mit frei definierbarem 2. Leistungseinschluss

Strahllage im Messfenster

Das Messfenster muss so positioniert werden, dass es den gesamten Strahl umschließt. Dies ist notwendig für eine korrekte Berechnung des Strahlradius und der Strahllage. Mögliche maximale Messfenstergrößen sind 8 mm x 8 mm, optional 16 mm x 8 mm oder 24 mm x 12 mm.

Zeitliche Stabilität

Der FocusMonitor ist für die Vermessung kontinuierlicher Laserstrahlung konzipiert. Zeitliche Schwankungen der Laserleistung oder Veränderungen der räumlichen Leistungsdichteverteilung können möglicherweise nicht exakt vermessen werden, sobald die Zeitkonstante der Schwankungen kleiner als die Messzeit von ca. 3 Sekunden ist.

Dauergepulste Laserstrahlung kann gemessen werden, jedoch können Interferenzen zwischen der Laserfrequenz und der Abtastfrequenz des Messgerätes auftreten. Verschiedene Mittelungsmodi können hier manchmal weiterhelfen – insbesondere die Menüpunkte *maximale Pixel* sowie *maximale Spur*.

Optional ist für den FocusMonitor ein Triggerausgang für gepulste Laser verfügbar. Das Triggersignal ist mit der Drehung der Messspitze gekoppelt und kann so zur Synchronisierung benutzt werden. Die Polarität, Pulsweite und Verzögerung des Triggersignals sind einstellbar. Die Einstellmöglichkeiten werden in einer separaten Dokumentation beschrieben.

Erfolgt die Leistungsstellung des Lasers über eine Pulsweitenmodulation (üblich bei vielen hochfrequenzangeregten Systemen), so kann eine Modulation der Laserleistung mit der Pulsfrequenz auftreten. Das bewirkt eine periodische Modulation auf dem Messergebnis. Gegebenenfalls treten Schwebungen auf.

Transmissive Optiken (z. B. Auskoppelplatten und Linsen) zeigen typischerweise ein thermisches Einlaufverhalten. Das bedeutet, dass je nach Optikmaterial etwa 10–20 Sekunden oder einige Minuten nach dem Einschalten des Laserstrahls vergehen, bis die Optik im thermischen Gleichgewicht ist. Während dieser Zeit verändert sich der Brechungsindex und die Dicke des Optikmaterials, das führt im Allgemeinen zu Veränderungen des Strahldurchmessers und der Strahldivergenz. Daraus resultiert schließlich eine Änderung der Fokuslage. Bei einer Beurteilung etwaiger Messergebnisse muss das in Betracht gezogen werden. Gegebenenfalls sollte erst nach einer ausreichenden Thermalisierungszeit gemessen werden.

Zur Vermessung der Thermalisierung der Optik muss ein definierter Zeitabstand zwischen dem Einschalten des Lasers und dem Start der Messung gewählt werden.

Für eine Beurteilung des Fokusshift ist oft auch der Vergleich der Kaustiken bei niedriger und bei hoher Laserleistung hilfreich.

Geringes Signal/Rausch-Verhältnis

Wenn die gemessenen Signale das Nullniveau nur wenig überschreiten und das Signal zu Rauschverhältnis gering ist, werden die berechneten Strahlparameter in der Übersichtsdarstellung nur in grauer statt in schwarzer Schrift angezeigt. In diesem Fall ist es nicht sicher, ob die berechneten Werte für den Radius und die Position belastbar sind. Prüfen Sie in diesem Fall die Relevanz der Messwerte sorgfältig. Durch Mittelung kann im Allgemeinen das Signal/Rauschverhältnis verbessert werden.

Relaxationsprozesse des Lasers im Bereich von einigen 10 kHz kann der Detektor des FocusMonitor auflösen. Die Strahlverteilungen erscheinen deshalb manchmal unruhig. Eine zeitliche Mittelung hilft hier.

13 Fehlerbehebung

Fehler	Mögliche Ursache	Abhilfe		
Fehler während einer Messung.	 Fehler in der Datenübertragung Prozessorabsturz im Messsystem Fehler in der Program- mausführung 	 Starten Sie das System neu (Schaltfläche <i>Reset</i> im Menü Messung>>Einzelmessung) Schalten Sie die Versorgungsspannung aus und wieder ein und lösen Sie erneut einen Reset-Zyklus aus. Starten Sie den Computer neu. 		
Außer einem Grundrau- schen und dem	Das Gerät ist nicht richtig ausgerichtet.	Prüfen Sie die Geräteausrichtung zum Laserstrahl.		
signal vorhanden.	Die Leistungsdichte im Fo- kus ist zu niedrig.	Erhöhen Sie die Laserleistung. Die absolute Leistungsdichte im Fokus muss typischerweise einige Hundert kW/cm ² betragen, um mit einer Standardmessspitze ein signifikantes Messsignal zu erreichen.		
	Bei kleinen Fokusspots (z. B. r _f =80 µm) und maximalem Messfenster ist die Auflösung zu niedrig gewählt.	Messen Sie zunächst außerhalb des unmittelbaren Fokusbereiches. Führt dies nicht zum Ergebnis, erhöhen Sie die Auflösung (z. B. 256x256).		
	Die Messspitze ist defekt.	Setzen Sie eine neue Messspitze ein (siehe auch Kapi- tel 14.3 auf Seite 83).		
	Die Messspitze ist falsch eingebaut.	Drehen Sie die Messspitze um.		
	Die Signalverstärkung ist zu niedrig.	Stellen Sie im Dialogfenster Messung>>Einzelmessung die maximale Verstärkung ein und wählen Sie den maximalen Messbereich. Akti- vieren Sie bei der Darstellung die Option Autoscale .		
Die Messspitze wird während der Messung zerstört.	Die Leistungsdichte ist zu groß, sodass auf der Oberfläche der Messspitze ein Plasma gezündet wird.	Erhöhen Sie die Drehzahl der Messspitze (siehe Ta- bellen Seite 81 und Seite 82) und spülen Sie den Messbereich mit Helium.		
Bei der Vermessung kleiner Strahlen wird ein Versatz der aufge- nommenen Messspuren zueinander beobachtet.	Schwankungen im Gleich- lauf der Rotationsscheibe sowie Verzögerungen beim Auslösen des Triggersignals.	Legen Sie die Strahlposition möglichst weit an den linken Rand des Messfensters. So wird der zeitliche Ab- stand zwischen dem Triggersignal und dem Messbeginn kleiner und Störungen können so reduziert werden. Oft ist hier auch eine Mittelung hilfreich.		

¹⁾ Beim FocusMonitor typischerweise 150 counts, (die aktuelle Zahl der "Counts" können Sie im Menüpunkt Darstellung>>Variable Schnitte ablesen).

14 Auswahl der Detektoren und Messspitzen

Unterschiedliche Messspitzen und Detektoren stehen für verschiedene Wellenlängen, Leistungsdichtebereiche oder Strahldivergenzen zur Verfügung, um jeweils mit maximaler Leistung messen zu können. Somit kann eine optimale Konfiguration des FocusMonitor erreicht werden. Bezüglich Leistung oder Leistungsdichte kann jeweils nur ein Wert voll ausgeschöpft werden.

Messspitzen	High Power CO ₂	High Div YAG	Diode Tip				
Typische Pinhole-Durchmesser in µm	20-25	20	50				
Strahldivergenz/Akzeptanzwinkel in mrad	< 240	< 200	< 400				
Typische Wellenlänge in µm	10-12	0,7-1,1	0,7-1,0				
CO ₂ -Laser							
Max. Leistungsdichte*) in MW/cm2	30		_				
Max. Leistung in kW	15 —		—				
Nd:YAG-Laser							
Max. Leistungsdichte*) in MW/cm2	—	10	1,0				
Max. Leistung in kW	—	10	4				
Diodenlaser							
Max. Leistungsdichte in MW/cm ² *)	—	2	1				
Max. Leistung in kW		6	4				
Geeignete Detektoren	DFCM+	DFIG-PS+, DFY-PS+	DFIG-PS+, DFY-PS+				

Tab. 14.1: Auswahl von Messspitzen und Detektoren

*) Bitte beachten Sie die Zerstörgrenzen in Tab. 14.3 auf Seite 81 und Tab. 14.4 auf Seite 82.

Die Messspitzen sind je nach Ausführung mit unterschiedlichen Leistungsdichten belastbar. Die Leistungsdichte ist abhängig von der Laserleistung und der Fokusgröße.

ACHTUNG

Beschädigungsgefahr der Messspitze

Bei sehr großen Leistungsdichten ($CO_2 > 15-20 \text{ MW/cm}^2$; YAG > 6 MW/cm²) ist es möglich, dass auf der Oberfläche der Messspitze ein Plasma gezündet wird. Das kann zur Zerstörung der Messspitze führen.

Erhöhen Sie die Drehzahl gemäß den Tabellen Tab. 14.3 auf Seite 81 und Tab. 14.4 auf Seite 82 und spülen Sie bei Bedarf mit Schutzgas.

Ein entsprechender Schutzgasanschluss ist in den Geräten mit Hochleistungserweiterung integriert.

In Abbildung Abb. 14.1 ist ein Messverlauf mit Zerstörung der Messspitze dargestellt.

- bei normalem Betrieb

- während eine Messspitze zerstört wurde.

Abb. 14.1: Messverlauf in der Darstellung Variable Schnitte

Im rechten Bild ist deutlich erkennbar, zu welchem Zeitpunkt das Messsignal ausgesetzt hat. Im Zweifelsfall kann eine Messspitze mit Hilfe eines HeNe-Lasers auf Durchgang geprüft werden. Dazu wird die Messspitze ausgebaut und mit einem 0,5 bis 1,0 mW Laser von hinten in die Spitze geleuchtet. Das Pinhole sollte einen deutlichen roten Reflex liefern.

Stellen Sie die Drehzahlen entsprechend der Leistungsdichte ein, die Sie in den Tabellen Tab. 14.3 auf Seite 81 und Tab. 14.4 auf Seite 82 ablesen. Geben Sie die Drehzahl im Dialogfenster Messung>>Sensorparameter ein.

Detektoren

Je nach Anwendung werden verschiedene Detektoren eingesetzt (siehe Tab. 14.1). Um das unterschiedliche Zeitverhalten der Systeme zu kompensieren, sind die verwendeten Detektoren explizit im Menü Messung>>Sensorparameter auszuwählen.

Detektortyp	Laser	Sensorart	Verstärkung	Wellenlängenbereich in µm
DFCM+	CO ₂	Pyroelektrischer-Detektor	1	9 – 12
DFY-PS+	NIR/VIS	Photodiode	Automatische Anpassung der Empfindlichkeit	0,4 - 1,1
DFIG-PS+	NIR	Photodiode	Automatische Anpassung der Empfindlichkeit	1,0 – 1,7

Tab. 14.2: Detektorauswahl

14.1 Grenzwerte für den Messbetrieb mit HP-CO₂-Messspitzen

Spezifikation für maximale Leistungsdichte ist 30 MW/cm² bis 6 kW, zwischen 6 kW und 12 kW bis 20 MW/cm², darüber bis 20 kW max. 15 MW/cm². Die Berechnungen gehen von einem Gauß-Profil aus. Die maximale Leistungsdichte in realen Strahlen mit den gleichen Abmessungen ist oft geringfügig kleiner (minus 10-20 % typisch, minus 50 % für eine Tophat-Verteilung). Im Zweifelsfall starten Sie mit geringerer Laserleistung.

Tabellenfeld		Weiß	Grün	Gelb	Orang	Orange			Weiß mit roten Werten		
Drehzahl	in min ⁻¹	1875	3750	7500	7500	und Schut	zgasspülu	ng Z	erstörungs	gefahr!	
		<u> </u>	<u> </u>				<u> </u>	5		<u> </u>	
70	5.20	25.98	51.97	77.95	103.94	207.88	311.81	415.75	623.63	1039.38	
80	3.98	19.89	39.79	59.68	79.58	159.15	238.73	318.31	477.46	795.77	
90	3.14	15.72	31.44	47.16	62.88	125.75	188.63	251.50	377.26	628.76	
100	2.55	12.73	25.46	38.20	50.93	101.86	152.79	203.72	305.58	509.30	
125	1.63	8.15	16.30	24.45	32.59	65.19	97.78	130.38	195.57	325.95	
150	1.13	5.66	11.32	16.98	22.64	45.27	67.91	90.54	135.81	226.35	
175	0.83	4.16	8.32	12.47	16.63	33.26	49.89	66.52	99.78	166.30	
200	0.64	3.18	6.37	9.55	12.73	25.46	38.20	50.93	76.39	127.32	
225	0.50	2.52	5.03	7.55	10.06	20.12	30.18	40.24	60.36	100.60	
250	0.41	2.04	4.07	6.11	8.15	16.30	24.45	32.59	48.89	81.49	
275	0.34	1.68	3.37	5.05	6.73	13.47	20.20	26.94	40.41	67.34	
300	0.28	1.41	2.83	4.24	5.66	11.32	16.98	22.64	33.95	56.59	
325	0.24	1.21	2.41	3.62	4.82	9.64	14.47	19.29	28.93	48.22	
350	0.21	1.04	2.08	3.12	4.16	8.32	12.47	16.63	24.95	41.58	
375	0.18	0.91	1.81	2.72	3.62	7.24	10.86	14.49	21.73	36.22	
400	0.16	0.80	1.59	2.39	3.18	6.37	9.55	12.73	19.10	31.83	
425	0.14	0.70	1.41	2.11	2.82	5.64	8.46	11.28	16.92	28.20	
450	0.13	0.63	1.26	1.89	2.52	5.03	7.55	10.06	15.09	25.15	
475	0.11	0.56	1.13	1.69	2.26	4.51	6.77	9.03	13.54	22.57	
500	0.10	0.51	1.02	1.53	2.04	4.07	6.11	8.15	12.22	20.37	
525	0.09	0.46	0.92	1.39	1.85	3.70	5.54	7.39	11.09	18.48	
550	0.08	0.42	0.84	1.26	1.68	3.37	5.05	6.73	10.10	16.84	
575	0.08	0.39	0.77	1.16	1.54	3.08	4.62	6.16	9.24	15.40	
600	0.07	0.35	0.71	1.06	1.41	2.83	4.24	5.66	8.49	14.15	
625	0.07	0.33	0.65	0.98	1.30	2.61	3.91	5.22	7.82	13.04	
650	0.06	0.30	0.60	0.90	1.21	2.41	3.62	4.82	7.23	12.05	
675	0.06	0.28	0.56	0.84	1.12	2.24	3.35	4.47	6.71	11.18	
700	0.05	0.26	0.52	0.78	1.04	2.08	3.12	4.16	6.24	10.39	
725	0.05	0.24	0.48	0.73	0.97	1.94	2.91	3.88	5.81	9.69	
750	0.05	0.23	0.45	0.68	0.91	1.81	2.72	3.62	5.43	9.05	
775	0.04	0.21	0.42	0.64	0.85	1.70	2.54	3.39	5.09	8.48	
800	0.04	0.20	0.40	0.60	0.80	1.59	2.39	3.18	4.77	7.96	
850	0.04	0.18	0.35	0.53	0.70	1.41	2.11	2.82	4.23	7.05	
900	0.03	0.16	0.31	0.47	0.63	1.26	1.89	2.52	3.77	6.29	
950	0.03	0.14	0.28	0.42	0.56	1.13	1.69	2.26	3.39	5.64	
1000	0.03	0.13	0.25	0.38	0.51	1.02	1.53	2.04	3.06	5.09	
1500	0.01	0.06	0.11	0.17	0.23	0.45	0.68	0.91	1.36	2.26	
2000	0.01	0.03	0.06	0.10	0.13	0.25	0.38	0.51	0.76	1.27	
	0.10	0.50	1.00	1.50	2.00	4.00	6.00	8.00	12.00	20.00	
	Leistung	in kW ·		→							

Zuordnung in der Tabelle:

Tab. 14.3: Leistungsdichte in MW/cm²

Die Lebensdauer der Messspitzen hängt neben der Leistungsdichte auch von der Reinheit der Oberfläche ab (Staub, Partikel, Fingerabdrücke). Bitte behandeln Sie die Messspitzen so sorgfältig wie möglich.

14.2 Grenzwerte für den Messbetrieb mit FK High div-Messspitzen

Die Berechnungen gehen von einem Tophat-Profil aus. Die maximale Leistungsdichte in realen Strahlen mit den gleichen Abmessungen ist oft höher (plus 10 %-60 % typisch, plus 100 % für eine Gauß-Verteilung). Im Zweifelsfall starten Sie mit geringerer Laserleistung. Die maximale Leistungsdichte beträgt bis 5 kW Leistung 10 MW/cm². Bei höheren Leistungen liegen noch wenig Erfahrungen vor. Wir empfehlen mit nicht mehr als 8 MW/cm² (bis 12 kW) zu arbeiten, bzw. max. 6 MW/cm² bis 20 kW.

Tabellenfeld			Weiß	Grün	Gelb		Orange			Weiß mit roten Werten		
Drehzahl in min ⁻¹			1875	3750	7500		7500 und Schutzgasspülung		spülung	Zerstörungsgefahr!		
			1					<u> </u>			00	
	70	2.60	12.99	25.98	38.98	51.9	103.94	155.91	207.88	311.81	519.69	
	80	1.99	9.95	19.89	29.84	39.7	9 79.58	119.37	159.15	238.73	397.89	
	90	1.57	7.86	15.72	23.58	31.4	4 62.88	94.31	125.75	188.63	314.38	
	100	1.27	6.37	12.73	19.10	25.4	6 50.93	76.39	101.86	152.79	254.65	
	125	0.81	4.07	8.15	12.22	16.3	30 32.59	48.89	65.19	97.78	162.97	
	150	0.57	2.83	5.66	8.49	11.3	2 22.64	33.95	45.27	67.91	113.18	
	175	0.42	2.08	4.16	6.24	8.32	16.63	24.95	33.26	49.89	83.15	
	200	0.32	1.59	3.18	4.77	6.37	12.73	19.10	25.46	38.20	63.66	
	225	0.25	1.26	2.52	3.77	5.03	10.06	15.09	20.12	30.18	50.30	
	250	0.20	1.02	2.04	3.06	4.07	8.15	12.22	16.30	24.45	40.74	
	275	0.17	0.84	1.68	2.53	3.37	6.73	10.10	13.47	20.20	33.67	
	300	0.14	0.71	1.41	2.12	2.83	5.66	8.49	11.32	16.98	28.29	
	325	0.12	0.60	1.21	1.81	2.41	4.82	7.23	9.64	14.47	24.11	
	350	0.10	0.52	1.04	1.56	2.08	4.16	6.24	8.32	12.47	20.79	
	375	0.09	0.45	0.91	1.36	1.81	3.62	5.43	7.24	10.86	18.11	
	400	0.08	0.40	0.80	1.19	1.59	3.18	4.77	6.37	9.55	15.92	
	425	0.070	0.35	0.70	1.06	1.41	2.82	4.23	5.64	8.46	14.10	
	450	0.063	0.31	0.63	0.94	1.26	2.52	3.77	5.03	7.55	12.58	
	475	0.056	0.28	0.56	0.85	1.13	2.26	3.39	4.51	6.77	11.29	
	500	0.051	0.25	0.51	0.76	1.02	2.04	3.06	4.07	6.11	10.19	
	525	0.046	0.23	0.46	0.69	0.92	1.85	2.77	3.70	5.54	9.24	
	550	0.042	0.21	0.42	0.63	0.84	1.68	2.53	3.37	5.05	8.42	
	575	0.039	0.19	0.39	0.58	0.77	1.54	2.31	3.08	4.62	7.70	
	600	0.035	0.18	0.35	0.53	0.71	1.41	2.12	2.83	4.24	7.07	
	625	0.033	0.16	0.33	0.49	0.65	5 1.30	1.96	2.61	3.91	6.52	
	650	0.030	0.15	0.30	0.45	0.60	1.21	1.81	2.41	3.62	6.03	
Î	675	0.028	0.14	0.28	0.42	0.56	5 1.12	1.68	2.24	3.35	5.59	
	700	0.026	0.13	0.26	0.39	0.52	1.04	1.56	2.08	3.12	5.20	
	725	0.024	0.12	0.24	0.36	0.48	0.97	1.45	1.94	2.91	4.84	
	750	0.023	0.11	0.23	0.34	0.45	0.91	1.36	1.81	2.72	4.53	
F	775	0.021	0.11	0.21	0.32	0.42	0.85	1.27	1.70	2.54	4.24	
ц	800	0.020	0.10	0.20	0.30	0.40	0.80	1.19	1.59	2.39	3.98	
erii	850	0.018	0.09	0.18	0.26	0.35	0.70	1.06	1.41	2.11	3.52	
SSE	900	0.016	0.08	0.16	0.24	0.31	0.63	0.94	1.26	1.89	3.14	
Ĩ	950	0.014	0.07	0.14	0.21	0.28	0.56	0.85	1.13	1.69	2.82	
J	1000	0.013	0.06	0.13	0.19	0.25	0.51	0.76	1.02	1.53	2.55	
Isdi	1500	0.006	0.03	0.06	0.08	0.11	0.23	0.34	0.45	0.68	1.13	
oku	2000	0.003	0.02	0.03	0.05	0.06	0.13	0.19	0.25	0.38	0.64	
Ш́,	3000	0.001	0.01	0.01	0.02	0.03	0.06	0.08	0.11	12.00	20.00	
		0.10	0.00	1.00	1.50	2.00	4.00	0.00	0.00	12.00	20.00	
		Leistung in	ıkW —		►							

Zuordnung in der Tabelle:

Tab. 14.4: Leistungsdichte in MW/cm²

Die Lebensdauer der Messspitzen hängt neben der Leistungsdichte auch von der Reinheit der Oberfläche ab (Staub, Partikel, Fingerabdrücke). Bitte behandeln Sie die Messspitzen so schonend wie möglich.

14.3 Messspitze wechseln oder drehen

ACHTUNG

Beschädigungsgefahr der Messspitze

Die sehr feine Bohrung der Messspitze kann durch Anfassen mit bloßen Händen und durch Schmutzpartikel schnell verstopfen.

► Tragen Sie bei der Montage/Demontage puderfreie Latexhandschuhe und achten Sie auf eine schmutz- und staubfreie Umgebung.

Montagefolge:

- 1. Schalten Sie die Versorgungsspannung aus.
- 2. Drehen Sie den FM auf den Kopf.
- 3. Drehen Sie die Rotationsscheibe bis die Messspitze in der Gehäuseaussparung sichtbar wird.
- 4. Entfernen Sie die Befestigungsschrauben des Haltebleches (je nach Baujahr: aktuell Torx T8 oder früher Innensechskant SW 1,5).

Abb. 14.2: Messspitze, Ansicht von unten

5. Drücken Sie die Messspitze samt Halteblech mit einem Schraubendreher von unten durch die Gehäusebohrung vorsichtig hoch (siehe Abb. 14.3).

Abb. 14.3: Messspitze herausdrücken

- 6. Ziehen Sie das Halteblech etwas nach oben und dann nach vorne, bis es sich lockert und mühelos entfernen lässt.
- 7. Entfernen Sie vorsichtig die Messspitze.
- 8. Setzen Sie die neue Messspitze ein (Achtung, die Eintrittsöffnung befindet sich auf der gewölbten Seite, siehe Abb. 14.4) oder drehen Sie die Messspitze um.

Abb. 14.4: Eintrittsöffnung (Pinhole) in der Messspitze

- 9. Setzen Sie das Halteblech mit der Führungsnut nach oben zeigend unter etwa 45 Grad mit kleinen Aufund Ab-Bewegungen in die Rotationsscheibe ein und drücken es dann nach unten in die Aussparung (siehe Abb. 14.5).
- 10. Prüfen Sie mit leichtem Druck an der Vorderkante des Haltebleches, ob es richtig aufliegt.

Abb. 14.5: Halteblech einsetzen

11. Setzen Sie die Schrauben ein und drehen Sie diese handfest an.

Wenn Sie die Messspitze gedreht haben, aktivieren Sie die Option "Gedrehte Messspitze" in der Software (siehe Seite 38), damit die korrekte Orientierung der x-Koordinaten sichergestellt ist.

14.4 Detektor wechseln

Standardmäßig ist der FocusMonitor mit einem DFIG-PS+ oder DFCM+ Detektor ausgerüstet. Für spezielle Anwendungen kann dieser Detektor durch ein System mit geänderter Empfindlichkeit oder anderem Zeitverhalten ersetzt werden. Mehr zur Auswahl der Detektoren für eine optimale Konfiguration des FocusMonitor finden Sie in Tabelle Tab. 14.1 auf Seite 79.

ACHTUNG

Beschädigungsgefahr des Detektorsensors

Der Detektorsensor darf nicht beschädigt werden und ist vor Verschmutzung zu schützen.

Berühren Sie den Detektorsensor nicht mit den Fingern und legen Sie ihn nie auf der Sensorfläche ab.

Verwenden Sie ausschließlich die isolierenden Kunststoffschrauben zur Befestigung des Detektors. Damit wird vermieden, dass elektrische Rauschsignale eingestreut werden können. Vergessen Sie das Moosgummiplättchen beim Einbau nicht, sonst kann die Rotationsscheibe durch die Schrauben mechanisch blockiert werden. Das Moosgummiplättchen sorgt ebenfalls für eine mechanische Entkopplung und elektrische Isolierung des Detektors.

Montagefolge:

- 1. Schalten Sie die Spannungsversorgung aus.
- 2. Entfernen Sie die Kunststoffschrauben (D) am Detektor (Bild 1).

 Nehmen Sie vorsichtig den Detektor aus der Position und lösen Sie zuerst den goldfarbenen Winkelstecker (A), danach den schwarzen Stecker (B) an der Rückseite des Detektors.

Bitte ziehen Sie nicht an den Kabeln!

- Zur Montage des neuen Detektors legen Sie zuerst das Moosgummiplättchen (C) auf die Befestigungsfläche des Detektors (Bild 3). Schließen Sie dann die Kabel an. Richten Sie den Detektor so aus, dass er beidseitig Abstand zum Gehäuse hat (Bild 4).
- 5. Schrauben Sie den Detektor mit den beiden Kunststoffschrauben (D) fest.

Werden die Schrauben zu fest angezogen, können sie die Rotationsscheibe blockieren!

Ziehen Sie die Schrauben nur **handfest** an. Das Moosgummiplättchen darf maximal auf die Hälfte seiner ursprünglichen Dicke zusammengedrückt werden!

Wenn Sie die Empfindlichkeit des Detektors ändern, starten Sie das Gerät bitte neu, indem Sie die Spannungsversorgung wieder einschalten und auf *Reset* klicken.

15 Wartung

Unter normalen Betriebsbedingungen arbeitet der FocusMonitor weitgehend wartungsfrei. In sehr staubiger Umgebung empfehlen wir, die mechanischen Führungen sowie die Spindeln vorsichtig mit Isopropanol zu reinigen und leicht einzufetten.

Generell empfehlen wir alle 12-24 Monate einen Service beim Hersteller durchzuführen.

16 Transport

Um Schäden zu vermeiden empfehlen wir, den FocusMonitor nur in der Originalverpackung oder im PRIMES-Transportkoffer zu befördern. Bei nicht vorhersehbaren Transportbedingungen demontieren Sie bitte die Messspitze des FocusMonitor und legen Sie diese in das mitgelieferte Kunststoffkästchen.

17 Maßnahmen zur Produktentsorgung

PRIMES ist im Rahmen des Elektro-Elektronik-Gesetzes (Elektro-G) verpflichtet, nach dem August 2005 gefertigte PRIMES-Messgeräte kostenlos zu entsorgen.

PRIMES ist bei der Stiftung Elektro-Altgeräte-Register ("EAR") als Hersteller unter der Nummer WEEE-Reg.-Nr. DE65549202 registriert.

Sie können innerhalb der EU zu entsorgende PRIMES-Messgeräte zur kostenfreien Entsorgung (dieser Service beinhaltet nicht die Versandkosten) an unsere Adresse senden:

PRIMES GmbH Max-Planck-Str. 2 D-64319 Pfungstadt Deutschland

18 Konformitätserklärung

Original-EG-Konformitätserklärung

Der Hersteller: PRIMES GmbH, Max-Planck-Straße 2, 64319 Pfungstadt erklärt hiermit, dass das Gerät mit der Bezeichnung:

FocusMonitor (FM)

Typen: FM35; FM120; FM+ 120; FMW; FMW+

die Bestimmungen der folgenden einschlägigen EG-Richtlinien erfüllt:

 Maschinenrichtlinie 2006/42/EG
 EMV-Richtlinie 2014/30/EU
 Niederspannungsrichtlinie 2014/35/EU
 RoHS-Richtlinie 2011/65/EU zur Beschränkung der Verwendung bestimmter gefährlicher Stoffe in Elektro- und Elektronikgeräten
 Richtlinie 2004/22/EG über Messgeräte

> Bevollmächtigter für die Dokumentation: PRIMES GmbH, Max-Planck-Str. 2, 64319 Pfungstadt

Der Hersteller verpflichtet sich, die technischen Unterlagen der zuständigen nationalen Behörde auf begründetes Verlangen innerhalb einer angemessenen Zeit elektronisch zu übermitteln.

R.15 5

Pfungstadt, 26.April 2017

Dr. Reinhard Kramer, Geschäftsführer

19 Technische Daten

Versorgungsdaten		
Versorgungsspannung, DC Maximale Stromaufnahme Max. Stromaufnahme im Standby-Betrieb	V A A	24 ± 10 % 4 0,5
Schutzgas (wasser- und ölfrei) Maximaler Druck	bar	He oder N_2 oder Ar 0,5
Kenndaten Messung		
Max. Leistungsdichtebereich (Details siehe Seite 81 und Seite 82) CO ₂ -Laser HighDivYAG Diode	MW/cm ² MW/cm ² MW/cm ²	30 10 1
Strahldurchmesser, typ.	μm	150 3000
Maße und Gewichte		
Abmessungen Länge x Breite x Höhe	mm	280 x 242 x 218
Gewicht, ca.	kg	8,5
Umgebungsbedingungen		
Gebrauchstemperaturbereich Lagerungstemperaturbereich	°C ℃	+10 +40 -10 +50
Referenztemperatur	°C	+22
Zulässige relative Luftfeuchte (nicht konden- sierend)	%	10 80

20 Abmessungen

Alle Angaben in mm (Allgemeintoleranz ISO 2768-v)

Alle Angaben in mm (Allgemeintoleranz ISO 2768-v)

20.1 Position des Pinhole am FocusMonitor (bezogen auf die Gerätekoordinaten)

Abb. 20.1: Messöffnung oben

Abb. 20.2: Messöffnung unten (Messspitze gedreht)

Alle Angaben in mm (Allgemeintoleranz ISO 2768-v)

21 Anhang

21.1 Anlagensteuerung

Mit einem SPS-Interface ist eine Kommunikation des Messgerätes mit der SPS-Steuerung des Lasers möglich. Es können z. B. Warnmeldungen oder Korrektursignale an die Laser/Anlagensteuerung gesendet werden, falls sich Fokuslage oder Fokusradius signifikant ändern.

Eine weitere Möglichkeit ist, Messungen von der Bearbeitungsanlage automatisch auszulösen. Auch die Variation von Anlagen- oder Laserparametern bei verschiedenen Messungen kann so automatisiert werden z. B. die Fokusmessung bei verschiedenen Ausgangsleistungen des Lasers.

PRIMES bietet ein SPS-Interface mit 16 Eingangs- und 16 Ausgangskanälen an. Für die Eingänge werden CNY 17-kompatible Optokoppler zur potentialfreien Verbindung verwendet.

Das **B**eam**C**ontrol**S**ystem (BCS) von PRIMES beinhaltet den FocusMonitor als Komponente für die Leistungsdichte- und Kaustikmessung und bietet eine PROFIBUS-Schnittstelle für die Anlagenkommunikation.

21.2 Beschreibung des MDF-Dateiformates

Das MDF-Dateiformat ist ein einfaches ASCII-Format, das die wichtigsten Daten einer Strahlvermessung enthält. MDF steht für "Measurement Data Format".

Durch dieses vereinheitlichte Format sollen Konversionsprobleme zwischen unterschiedlichen Auswerteprogrammen reduziert werden und auch eine sichere Datenübertragung auch z. B. durch e-mail gewährleistet werden.

Ein wesentlicher Vorteil vom MD-Format ist die Möglichkeit, Messdaten sehr effizient, d.h. speicherplatzsparend und schnell zu speichern. Außerdem kann auch der Lesezugriff auf die Daten in der Datei optimiert werden. Dazu muss die Datei einmalig, beispielsweise beim ersten Öffnen, umgewandelt ("sortiert") werden, wodurch ein indizierter und somit schneller Zugriff auf die Daten möglich wird.

MDF enthält sowohl die während einer Messung anfallenden Rohmessdaten, als auch Metadaten, die zur Interpretation der Rohdaten notwendig sind. Dazu gehören beispielsweise Informationen zur Umwandlung der Rohdaten in physikalische Werte.

Die MDF-Dateien sind wie folgt gegliedert:

Zeile	Inhalt
1	MDF100 (file identifier)
2	Zahl der Bildpunkte: in x-Richtung in y-Richtung
3	Größe des Messbereiches: Länge in x (mm) Länge in y (mm)
4	Position entlang der Strahlachse: z-Position (mm)
5	Position entlang der Strahlachse: z-Position (mm)
6	Verstärkung des Messsignals: Verstärkung (dB)
7	Zahl der Mittelungen: Zahl
8	Offset-Wert der vom Messgerät angezeigt wird: Offset - Wert
9	Wellenlänge-Wert
10	Leistung-Wert
11	Brennweite-Wert
12	Datum, Uhrzeit-Wert
х	In den folgenden Zeilen stehen die Daten (Es stehen nicht mehr als 80 Zeichen pro Zeile.)
х	
х	

Kommentare

Kommentare werden als zusätzliche Zeilen eingefügt, in der Zeile nach dem file identifier. Die Kommentarzeilen beginnen jeweils mit einem Semikolon.

Beispiel:

••••

••••

22 Grundlagen der Strahldiagnose

22.1 Laserstrahlparameter

Abb. 22.1: Skizze zur Definition der Strahlparameter

22.1.1 Rotationssymmetrische Strahlen

Entsprechend ISO 11145 und ISO 11146 werden für die Charakterisierung eines rotationssymmetrischen Strahls drei Strahlparameter benötigt.

- die z-Position der Strahltaille (Fokus) z₀
- den Durchmesser der Strahltaille d
- den Fernfelddivergenzwinkel Θ

Mit Hilfe dieser drei Größen ist es möglich den Strahldurchmesser an jedem Ort entlang der Ausbreitungsrichtung zu bestimmen. Als Einschränkung gilt: Der Divergenzwinkel muss kleiner sein als 0,8 rad und Fokusdurchmesser sowie Divergenzwinkel sind nach der 2. Moment-Methode berechnet worden.

Gleichung 1:
$$d_{\sigma}(z) = \sqrt{d_{\sigma0}^2 + \frac{1}{4}(z - z_0)^2 \cdot \theta_{\sigma}^2}$$

Weiterhin wird die Strahlausbreitung durch den sogenannten Strahlpropagationsfaktor K beschrieben.

Gleichung 2:

$$=\frac{1}{M^2}=\frac{4\cdot\lambda}{\pi}\cdot\frac{1}{d_{\sigma 0}\cdot\theta_{\sigma}}$$

mit:

 $\begin{array}{lll} \mathsf{K}: & = \mathsf{Strahlpropagationsfaktor} \\ \mathsf{M}^2: & = \mathsf{BeugungsmaBzahl} \\ \lambda: & = \mathsf{Wellenlänge} \text{ in einem Medium mit der Brechzahl n} \\ \Theta_{\sigma}: & = \mathsf{Divergenzwinkel} \\ \mathsf{d}_{\sigma^0}: & = \mathsf{Strahltaillendurchmesser} \end{array}$

Das sich hieraus ableitende Strahlparameterprodukt ist eine Erhaltungsgröße, solange abbildungsfehlerfrei und aperturfreie Komponenten verwendet werden.

Gleichung 3:
$$SPP = \frac{d_{\sigma 0} \cdot \theta}{4} = \frac{\lambda}{\pi \cdot k} = \frac{M^2 \cdot \lambda}{\pi}$$

Ein wichtiger Strahlparameter ist die Rayleighlänge:

Κ

Die Rayleighlänge ist die Strecke in Richtung der Ausbreitung, in der sich der Laserstrahl um $\sqrt{2}$ vergrößert hat. Sie berechnet sich nach folgender Formel:

Gleichung 4:

$$z_R = \frac{d_{\sigma 0}}{\theta} = \frac{\pi \cdot d_{\sigma 0}^2}{4\lambda \cdot M^2}$$

22.1.2 Nicht rotationssymmetrische Strahlen

Um nichtrotationssymmetrische Strahlen beschreiben zu können, werden folgende Strahlparameter benötigt.

- die z-Positionen der Strahltaille (Fokus) z, und z,
- die Durchmesser der Strahltaille $d_{\sigma_{0x}}$ und $d_{\sigma_{0y}}$
- die Fernfelddivergenzwinkel $\Theta_{_{TX}}$ und $\Theta_{_{TY}}$
- den Winkel φ zwischen der x´- Achse des Messsystems und der x- Achse des Strahls (die x- Achse des Strahls ist jede, die am n\u00e4chsten zur x- Achse des Messsystems liegt.)

Abb. 22.2: Strahlparameter des nichtrotationssymmetrischen Strahls

Mit Hilfe der oben genannten Parametern lassen sich alle Strahlen, die sich durch zwei zueinander senkrecht stehenden Achsen charakterisieren lassen, beschreiben.

Die weiteren Strahlparameter, wie die K-Zahl oder die Beugungsmaßzahl, werden richtungsabhängig mit den selben Gleichungen berechnet, wie die der rotationssymmetrischen Strahlen. Es ergeben sich somit stets zwei Parameter wie z. B. Kx und Ky.

22.2 Berechnung der Strahldaten

Es sind - zur Berechnung der Strahldaten - sowohl die von dem ISO Standard 11146 geforderten Algorithmen zur 2. Moment Methode implementiert, als auch die in der Industrie weit verbreitete 86 %-Methode. Für den Gauß schen TEM00-Mode liefern beide Methoden sehr ähnliche Ergebnisse, wohingegen für die meisten anderen realen Laserstrahlen die 2. Moment-Methode größere Strahldurchmesser berechnet als die 86%-Methode.

Laserstrahlung ist oft eine Mischung aus verschiedenen Moden mit unterschiedlichen Frequenzen und Kohärenzeigenschaften.

Alle bekannten Messverfahren liefern nur einen kleinen Teil der Information über den Strahl. Deswegen hängen die berechneten Strahlparameter immer vom Messprinzip ab. Für die Interpretation der Messergebnisse ist es wichtig, sich dessen bewusst zu sein.

Die Berechnung des Strahlradius setzt drei vorbereitende Schritte voraus.

- 1. Messung der Leistungsdichteverteilung
- 2. Bestimmung des Nulllevels
- 3. Bestimmung der Strahllage

22.2.1 Bestimmung des Nulllevels

Der Nulllevel kann zum Beispiel mit einem Histogramm bestimmt werden, in dem die Häufigkeit der gemessenen Leistungsdichtewerte aufgetragen ist (siehe Abb. 22.3).

Nulllevel des Signals

Abb. 22.3: Schematisches Histogramm der abgetasteten Messpunkte

Das Histogramm zeigt, wie häufig eine bestimmte Leistungsdichte gemessen wurde. Das Maximum dieser Kurve gibt die Leistungsdichte des Nulllevels an. Diese Leistungsdichte wird von allen gemessenen Werten der Leistungsdichteverteilung abgezogen.

Es ist wichtig den Nulllevel genau zu messen, weil schon ein kleiner Fehler zu einer drastischen Änderung des Berechnungsvolumen führt. Dies wiederum hat große Auswirkung auf den berechneten Strahlradius.

22.2.2 Bestimmung der Strahllage

Die Strahllage wird nach der 1. Moment-Methode bestimmt. Das heißt, es wird der Schwerpunkt der Leistungsdichteverteilung (E(x,y,z)) bestimmt.

Gleichung 5:
$$\overline{x} = \frac{\iint x \cdot E(x, y, z) dx dy}{\iint E(x, y, z) dx dy}$$
 $\overline{y} = \frac{\iint y \cdot E(x, y, z) dx dy}{\iint E(x, y, z) dx dy}$

Nachdem die Strahllage bekannt ist, gibt es - wie eingangs des Kapitels erwähnt - zwei Möglichkeiten, den Strahlradius zu berechnen.

22.2.3 Radiusbestimmung mit dem 2. Moment der Leistungsdichteverteilung

Die Berechnung des Strahlradius nach dem 2. Moment der Leistungsdichteverteilung erfolgt nach Gleichung 6.

Gleichung 6:

$$\sigma_x^2(z) = \frac{\iint (x - \bar{x})^2 \cdot E(x, y, z) \, dx \, dy}{\iint E(x, y, z) \, dx \, dy} \qquad \sigma_y^2(z) = \frac{\iint (y - \bar{y})^2 \cdot E(x, y, z) \, dx \, dy}{\iint E(x, y, z) \, dx \, dy}$$

Ausgehend von Gleichung 6 berechnet sich der Strahldurchmesser folgendermaßen:

$$d_{\sigma x}(z) = 4 \cdot \sigma_x(z)$$

Gleichung 7:

$$d_{\sigma v}(z) = 4 \cdot \sigma_{v}(z)$$

Dieser Algorithmus beinhaltet das Produkt aus der Leistungsdichte und dem Abstandsquadrat zum Schwerpunkt. Er funktioniert nur zuverlässig, wenn die Nullebene richtig bestimmt ist. Der Füllfaktor, der Quotient aus Strahldurchmesser durch Integrationsbereich/Messfenstergröße, ist eine weitere wichtige Größe. Er sollte stets einen Wert zwischen 0,3 und 0,6 haben.

22.2.4 Radiusbestimmung mit der Methode des 86%igen Leistungseinschlusses

Der erste Schritt ist die Bestimmung des Volumens der Leistungsdichteverteilung. Es ist proportional zur Gesamtleistung. Die Addition aller Leistungsdichtewerte und ihre Multiplikation mit den Pixelabmessungen ergibt das Volumen und somit die Gesamtleistung. Ein zuverlässiger Nulllevelabzug ist auch hier die wesentliche Basis.

Ausgehend von dieser Gesamtleistung wird der Bereich betrachtet, der 86 % der Gesamtstrahlleistung einschließt. Diese Strahlleistung muss innerhalb des Strahlradius liegen.

Typischerweise startet die Integration bei den Werten maximaler Leistungsdichte. Dann wird der Integrationsbereich solange vergrößert, bis 86 % der Gesamtleistung innerhalb liegen. Bei der Integration wird die Zahl der Bildpunkte gezählt. Daraus kann schließlich die 86 %-Fläche und somit der Strahldurchmesser bestimmt werden. Für zirkulare grundmodeähnliche Strahlen arbeitet das Verfahren gut.

Abb. 22.4: Grafische Darstellung der Berechnung des 86%-Radius

- a) zeigt die Leistungsdichteverteilung
- b) zeigt nur die Bildpunkte, die zusammen 86 % der Leistung einschließen.
 Die Bildpunkte mit niedriger Leistung sind zur Verdeutlichung auf Null gesetzt.
- c) zeigt einen Schnitt beim "86 %-Leistungseinschluss".
 Das Niveau liegt bei 14 % der maximalen Leistung
- d) zeigt den Schnitt durch die Verteilung bei 86 %.

22.2.5 Weitere Radiusdefinitionen (Option)

Nicht alle Messgeräte zur Laserstrahldiagnose zeigen das gleiche Messergebnis, wenn sie zu vergleichenden Messungen an ein und demselben Laserstrahl herangezogen werden. Neben einer unterschiedlichen Validierung der Messgeräte haben auch die Messverfahren und die verwendeten Auswertealgorithmen Einfluss auf die ermittelten Strahlabmessungen. Nicht alle verwendeten Verfahren sind normenkonform, werden aber, z. B. im wissenschaftlichen Bereich, bevorzugt verwendet. Aus praktischen Gründen, z. B. zur Auslegung von Blenden oder zur Korrelation mit Bearbeitungsergebnissen, kann es auch hilfreich sein, alternative Strahlradiusdefinitionen zu verwenden.

Optional bieten wir eine Erweiterung auf folgende alternative Radiusdefinitionen an:

- 1. Schneidenmethode nach ISO 11146-3
- 2. Schlitzmethode nach ISO 11146-3
- 3. Gaußfit-Methode
- 4. 1/e²-Leistungsdichteabfall-Methode
- 5. Leistungseinschluss-Methode mit frei definierbarem 1. Leistungseinschluss
- 6. Leistungseinschluss-Methode mit frei definierbarem 2. Leistungseinschluss

Abb. 22.5: Schematische Darstellung der optional für die PRIMES-LDS angebotenen Strahlradiusdefinitionen

